• 제목/요약/키워드: Pressure modulation

검색결과 149건 처리시간 0.026초

앞쪽머리자세가 있는 만성 목통증 환자에게 압력 바이오피드백 장비를 이용한 목안정화운동 적용이 목통증과 앞쪽머리자세, 음향학적 특성 변화에 미치는 효과 (Effects of Cervical Stabilization Exercise Using Pressure Biofeedback on Neck Pain, Forward Head Posture and Acoustic Characteristics of Chronic Neck Pain Patients with Forward Head Posture)

  • 김기철;황보필녀
    • 대한물리의학회지
    • /
    • 제14권1호
    • /
    • pp.121-129
    • /
    • 2019
  • PURPOSE: This study was conducted to measure the effects of cervical stabilization exercises on neck pain, forward head posture, and the acoustic characteristics frequency and amplitude modulation of patients with chronic neck pain caused by forward head posture using pressure biofeedback. METHODS: 20 patients with chronic neck pain and voice disorders presenting at the S Exercise Center in Daegu, Korea, were included in the study. A cervical stabilization exercise program of 50 minutes per session was performed three times a week for eight weeks. Pressure biofeedback was utilized to determine the impact of the exercises on neck pain, forward head posture, and the acoustic characteristics of the patients. The measurements were taken prior to and after the intervention to determine any changes. RESULTS: A significant improvement in neck pain, craniovertebral angle and the acoustic characteristics frequency and amplitude modulation of the patients was demonstrated after the intervention (p<.05). CONCLUSION: Cervical stabilization exercises were demonstrated to have a significantly positive effect on neck pain, forward head posture, and vocalization stability in patients with chronic neck pain in the current study based on measurements taken using a pressure biofeedback system. This indicates that an improvement in forward head posture positively impacts postural stability and vocalization. Future studies investigating a greater range of interventions designed to improve neck pain and acoustical effects in patients with chronic neck pain and forward head posture patients are warranted.

목적 연소압 형상을 이용한 음질 개선에 관한 연구 (The Study of the improvement of the sound quality using the target profile of combustion pressure)

  • 황철균;민병두;김인수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.649-653
    • /
    • 2006
  • Engine Noise is composed of the mechanical and combustion noise. The contribution of combustion noise is generally bigger than the contribution of the mechanical noise at idle condition in DI diesel engine. That noise usually makes a roughness problem at the fundamental engine order. It is difficult to remove the modulation frequency so we have to directly reduce the combustion noise. The key effect of combustion noise reducing solution is the modification of the combustion pressure profile. It is accomplished by the multiple injection method and we solved the 400Hz combustion noise and improved the sound quality at idle condition in DI diesel engine.

  • PDF

자동변속기 KICK DOWN 시스템의 1차 압력 제어를 위한 유압 회로 해석에 관한 연구 (A Study on the Analysis of Hydraulic Circuit for First Pressure Control of Automatic Transmission KICK DOWN System)

  • 김대중;송창섭
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1991년도 추계학술대회 논문집
    • /
    • pp.171-179
    • /
    • 1991
  • This paper refers to the results of a study on the usefulness of simulation techniques based on both modeling and experiments of KICK DOWN pressure control circuit using an duty solenoid valve controlled by pulse width modulation for an automatic transmission. In this study, dynamic characteristics of solenoid valve plunger and first pressure are verified. Besides, this paper shows the design data for improvement of feeling in changing of gear by means of simulation according to varying the size of jet orifice and temperature of automatic transmission fluid, which are the important variables of the first pressure.

  • PDF

고전압 입력용 SMPS의 고효율 전략 (High Efficiency Strategy of High Input Voltage SMPS)

  • 우동영;박성미;박성준
    • 한국산업융합학회 논문집
    • /
    • 제22권3호
    • /
    • pp.365-371
    • /
    • 2019
  • Recently, the demonstration and research on the power transmission using high voltage DC such as HVDC(High Voltage DC), Smart Grid, DC transmission and distribution have been actively conducted. In order to control the power converter in high-voltage DC power transmission system, SMPS(Switching Modulation Power Supply) for power converter control using high-voltage DC input is essential. However, the demand for high-pressure SMPS is still low, so the development is not enough. In the low-output SMPS using the high-voltage input, it is difficult to achieve high efficiency due to the switching transient loss especially at light load. In this paper, we propose a new switching scheme for high power SMPS control for low output power. The proposed method can provide better efficiency increase effect in the light load region compared to the existing PWM method. To verify the feasibility of the proposed method, a 40 W SMPS for HVDC MMC(Modulation Multi-level Converter) was designed and verified by simulation.

Etch Characteristics of $SiO_2$ by using Pulse-Time Modulation in the Dual-Frequency Capacitive Coupled Plasma

  • 전민환;강세구;박종윤;염근영
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.472-472
    • /
    • 2011
  • The capacitive coupled plasma (CCP) has been extensively used in the semiconductor industry because it has not only good uniformity, but also low electron temperature. But CCP source has some problems, such as difficulty in varying the ion bombardment energy separately, low plasma density, and high processing pressure, etc. In this reason, dual frequency CCP has been investigated with a separate substrate biasing to control the plasma parameters and to obtain high etch rate with high etch selectivity. Especially, in this study, we studied on the etching of $SiO_2$ by using the pulse-time modulation in the dual-frequency CCP source composed of 60 MHz/ 2 MHz rf power. By using the combination of high /low rf powers, the differences in the gas dissociation, plasma density, and etch characteristics were investigated. Also, as the size of the semiconductor device is decreased to nano-scale, the etching of contact hole which has nano-scale higher aspect ratio is required. For the nano-scale contact hole etching by using continuous plasma, several etch problems such as bowing, sidewall taper, twist, mask faceting, erosion, distortions etc. occurs. To resolve these problems, etching in low process pressure, more sidewall passivation by using fluorocarbon-based plasma with high carbon ratio, low temperature processing, charge effect breaking, power modulation are needed. Therefore, in this study, to resolve these problems, we used the pulse-time modulated dual-frequency CCP system. Pulse plasma is generated by periodical turning the RF power On and Off state. We measured the etch rate, etch selectivity and etch profile by using a step profilometer and SEM. Also the X-ray photoelectron spectroscopic analysis on the surfaces etched by different duty ratio conditions correlate with the results above.

  • PDF

Numerical prediction of pressure pulsation amplitude for different operating regimes of Francis turbine draft tubes

  • Lipej, Andrej;Jost, Dragica;Meznar, Peter;Djelic, Vesko
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권4호
    • /
    • pp.375-382
    • /
    • 2009
  • Hydraulic instability associated with pressure fluctuations is a serious problem in hydraulic machinery. Pressure fluctuations are usually a result of a strong vortex created in the centre of a flow at the outlet of a runner. At every radial turbine and also at every single regulating axial turbine, the draft tube vortex appears at part-load operating regimes. The consequences of the vortex developed in the draft tube are very unpleasant pressure pulsation, axial and radial forces and torque fluctuation as well as turbine structure vibration. The consequences of the vortex are transferred upstream and downstream with amplitude and frequency modulation in respect of the turbine operating regime, cavitation conditions and air admitted content. Numerical prediction of the vortex appearance in the design stage is a very important task. The amplitude of the pressure pulsation is different for each operating regime therefore the main goal of this research was to numerically predict pressure pulsation amplitude versus different guide vane openings and to compare the results with experimental ones. For the numerical flow analysis of a complete Francis turbine (FT), the computer code ANSYS-CFX11 has been used.

Al 5J32 합금의 레이저 용접에서 레이저출력 모듈레이션을 이용한 이면 험핑 비드의 안정화 (Prevention of Back Side Humping in Laser Welding of Al 5J32 Alloy by Using Laser Power Modulation)

  • 안도창;김철희;김재도
    • Journal of Welding and Joining
    • /
    • 제29권4호
    • /
    • pp.80-84
    • /
    • 2011
  • In the 5xxx series Al-Mg alloy, magnesium addition can increase the strength of aluminum alloy by solid solution strengthening but it has a relatively low melting and boiling temperature. During full -penetration laser welding of the Al-Mg alloys, its low boiling point and high vapor pressure brings about the spiky humping bead on the bottom side. Under back-side shielding, the spiking of back bead can be reduced but it restraints the process flexibility. In this study, a square pulse waveform modulation was employed to stabilize keyhole and back bead surface without back-side shielding. By using an experimental design, the bead shapes were evaluated for various process parameters such as the focal position, welding velocity and waveform parameters and the smooth back bead shape could be achieved.

고주파수 PWM제어를 이용한 ABS의 맥동 저감에 관한 연구 (A Study on Falling Pressure Surge of ABS Using High Frequency PWM Control)

  • 이용주;김병우;박호
    • 한국공작기계학회논문집
    • /
    • 제12권3호
    • /
    • pp.38-44
    • /
    • 2003
  • The solenoid valve in ABS hydraulic modulator is a two directional on-off valve and is controlled by around 100Hz high speed pulse width modulation. When the valve is switched from open state to closed state, noise and vibration due to pressure surge phenomena in the hydraulic line and wheel cylinder are made. In this study, we identify Pressure surge phenomenon in the braking process of a ABS, and investigate the way to reduce the phenomenon. For the purpose of theoretical analysis on the pressure surge in the closed state hydraulic line, characteristic curve method based on wave equation was utilized. To reduce the surge, high frequency control of 20kHz was attempted. The result showed that the surge pressure of 50% was reduced compared to one observed in the low frequency control. Duty variation of high frequency can control current of solenoid valve and prevent sudden change of displacement.

솔레노이드 타입 디젤 커먼레일 인젝터 구동을 위한 전류 파형 변화에 따른 분사 연료 압력파 특성 (A Study on Characteristics of Injected Fuel Pressure Waves of a Solenoid Type Diesel Common Rail Injector with Controlling Current Wave for Driving the Injector)

  • 김길태;이충훈
    • 한국분무공학회지
    • /
    • 제21권3호
    • /
    • pp.155-161
    • /
    • 2016
  • Injected fuel pressure waves of a common rail injector with various current profiles supplied to the injecor were measured using Bosch method. In order to drive the common rail injector, the current in the solenoid should be controlled using what is known as a peak and hold pattern, which consists of a high current level with a short time duration (peak) in the first step and a low current level with a long time duration (hold) in the subsequent step. The current profile can be shaped by swithcing an injector driving power source with the peak and hold waves. The capture, compare and PWM (CCP) pin in the microprocessor was used to generate the combined peak and hold waves. The PWM square wave generated from the CCP pin has a duty ratio of 100% for the peak current and 10% or 30% for the hold pattern. Five patterns of the current profile were generated by combining the peak and hold wave. The common rail pressure is controlled at 75, 100, and 130 MPa. As the fuel rail pressure increases, the variations of the measured fuel injection pressure wave according to the current profiles decrease.

PID 제어를 이용한 멀티형 열펌프의 용량조절 (Capacity Modulation of a Multi-Type Heat Pump System Using PID Control)

  • 정대성;김민성;김민수;이원용
    • 설비공학논문집
    • /
    • 제12권5호
    • /
    • pp.446-475
    • /
    • 2000
  • Performance of a water-to-water multi-type heat pump system using R22 has been experimentally investigated. Total refrigerant flow rate was adjusted with a variable speed compressor and the refrigerant flow rate for two indoor units were controlled by electronic expansion valves. Evaporator outlet pressure of refrigerant and indoor unit outlet temperatures of secondary fluid were selected as controlled variables. Experiments were carried out for both cooling and heating modes using PID control method. Results show that the multi-type heat pump system can be adequately controlled by keeping control gains at certain levels for various operating conditions.

  • PDF