• Title/Summary/Keyword: Pressure measurement systems

Search Result 281, Processing Time 0.025 seconds

Development of Two-color Radiation Thermometer for Harsh Environments

  • Mohammed, Mohammed Ali Alshaikh;Kim, Ki-Seong
    • Journal of ILASS-Korea
    • /
    • v.21 no.4
    • /
    • pp.184-194
    • /
    • 2016
  • Many industrial processes require reliable temperature measurements in harsh environments with high temperature, dust, humidity, and pressure. However, commercially-available conventional temperature measurement devices are not suitable for use in such conditions. This study thus proposes a reliable, durable two-color radiation thermometer (RT) for harsh environments that was developed by selecting the appropriate components, designing a suitable mechanical structure, and compensating environmental factors such as absorption by particles and gases. The two-color RT has a simple, compactly-designed probe with a well-structured data acquisition system combined with efficient LabVIEW-based code. As a result, the RT can measure the temperature in real time, ranging from 300 to $900^{\circ}C$ in extremely harsh environments, such as that above the burden zone of a blast furnace. The error in the temperature measurements taken with the proposed two-color RT compared to that obtained using K-type thermocouple readouts was within 6.1 to $1.4^{\circ}C$ at a temperature range from 200 to $700^{\circ}C$. The effects of absorption by gases including $CO_2$, CO and $H_2O$ and the scattering by fine particles were calculated to find the transmittance of the two wavelength bands of operation through the path between the measured burden surface and the two-color probe. This method is applied to determine the transmittance of the short and long wavelength bands to be 0.31 and 0.51, respectively. Accordingly, the signals that were measured were corrected, and the true burden surface temperature was calculated. The proposed two-color RT and the correction method can be applied to measure temperatures in harsh environments where light-absorbing gases and scattering particles exist and optical components can be contaminated.

Experimental Study on the Characteristics of Heat and Mass Transfer on the Teflon Coated Tubes (테프론 코팅 전열관 표면으로의 열 및 물질 전달 특성에 관한 실험적 연구)

  • Lee, Jang-Ho;Kim, Hyeong-Dae;Kim, Jung-Bae;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1051-1060
    • /
    • 2003
  • The heat and mass transfer on two kinds of tube surfaces (bare stainless steel tube and Teflon coated tube) in steam-air mixture flow are experimentally studied to obtain design data for the heat exchanger of the latent heat recovery from flue gas. In the test section, 3-tubes are horizontally installed, and steam-air mixture is vertically flowed from the top to the bottom. The pitch between tubes is 67mm, the out-diameter of tube is 25.4mm, and the thickness is 1.2mm ; blockage factor (cross sectional tube area over the cross sectional area of the test section) is about 0.38. All of sensors and measurement systems (RTD, pressure sensor, flow-meter, relative humidity sensor, etc.) are calibrated with certificated standard sensors and the uncertainty for the heat transfer measurement is surveyed to have the uncertainty within 7%. As experimental results, overall heat transfer coefficient of the Teflon (FEP) coated tube is degraded about 20% compared to bare stainless tube. The degradation of overall heat transfer coefficient of Teflon coated tube comes from the additional heat transfer resistance due to Teflon coating. Its magnitude of heat transfer resistance is comparable to the in-tube heat transfer resistance. Nusselt and Sherwood numbers on Teflon (FEP) coated surface and bare stainless steel surface are discussed in detail with the contact angles of the condensate.

Measurement of residual stress of TEOS and PSG for MEMS (MEMS용 PSG와 TEOS의 열처리에 따른 잔류응력의 측정)

  • Yi, Sang-Woo;Lee, Sang-Woo;Kim, Jong-Pal;Park, Sang-Jun;Lee, Sang-Chul;Kim, Sung-Un;Cho, Dong-Il
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2536-2538
    • /
    • 1998
  • This paper investigates the residual stress of tetraethoxysilane (TEOS) and 7wt% phosphosilicate glass (PSG), which are commonly used as a sacrificial layer or etch mask in the fabrication of microelectromechanical systems (MEMS). In order to measure residual stress, $2{\mu}m$ thick TEOS and PSG stress measurement structures are fabricated. Polysilicon is used as the sacrificial layer. First the residual stress of an as-deposited 7wt% PSG flim and TEOS film are measured to be-0.3115% and -0.435%, respectively, which are quite large. These films are annealed from $500^{\circ}C$ to $800^{\circ}C$. Annealing has the effects of reducing residual stress. In the case of the 7wt% PSG film, the residual stress becomes +0.00715% after annealing at $625^{\circ}C$ for 150 minutes. In the case of TEOS film, the residual stress reduces to -0.2134% after same condition. Incidentally, this condition is the same condition for depositing a $2{\mu}m$ thick polysilicon at $625^{\circ}C$ at our low pressure chemical vapor deposition (LPCVD) furnace.

  • PDF

An Experimental Study on the a Light Device which Adopt Safety Ultra Constant Dischange Lamp (초정압 방전램프(UCD)를 적용한 안전 조명 장치에 관한 연구)

  • Jeong, Poong-Gi;Kim, Young-Chul
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2010.11a
    • /
    • pp.63-80
    • /
    • 2010
  • This paper describes the development of various lighting equipment adapting Ultra Constant Discharge Lamp that has newly been on commercial supply in the market. Meeting the required conditions of lighting equipment, various types of UCD Lamp equipment with excellent performances could be successfully developed. In order to provide a guideline for the economical lighting product selection, the analyzed data comparison between Hi-pressure Sodium Lamp which has been the most popular lamp for street lighting and UCD Lamp is provided. The conclusions of the study are made as follows; (1) The performance measurement result of UCD Lamp shows excellent Luminous Efficacy as 108Lm/W, daylight-like Color Rendering Index as 90Ra, and the best operating temperature range as $-50^{\circ}C{\sim}+85^{\circ}C$. Comparing to the Hi-pressure Sodium Lamp, UCD could be evaluated as much superior products. (2) In an assembled status with the lighting fixture (Type STB형-60W), UCD Lamp was tested OK for one hour duration at the temperature range form $-50^{\circ}C$ to $+85^{\circ}C$ and the humidity of 98%. The operation at the extremely low temperature can be an excellent feature to enable the export to the cold temperature regions such as Northern Europe and Russia and the specific applications for defense systems and special industry. (3) As UCD Lamp is a genuine Korea made product following Energy-saving and Eco-friendly policy, it should be appreciated as one of the best $CO^2$ reduction Green product.

  • PDF

Vortex Features in a Half-ducted Axial Fan with Large Bellmouth (Effect of Tip Clearance)

  • Shiomi, Norimasa;Kinoue, Yoichi;Setoguchi, Toshiaki;Kaneko, Kenji
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.3
    • /
    • pp.307-316
    • /
    • 2011
  • In order to clarify the features of tip leakage vortex near blade tip region in a half-ducted axial fan with large bellmouth, the experimental investigation was carried out using a 2-dimensional LDV system. Three sizes of tip clearance (TC) were tested: those sizes were 1mm (0.55% of blade chord length at blade tip), 2mm (1.11% of blade chord length at blade tip) and 4mm (2.22% of blade chord length at blade tip), and those were shown as TC=1mm, TC=2mm and TC=4mm, respectively. Fan characteristic tests and the velocity field measurements were done for each TC. Pressure - flow-rate characteristics and two-dimensional velocity vector maps were shown. The vortex trace and the vortex intensity distribution were also illustrated. As a result, a large difference on the pressure - flow-rate characteristics did not exist for three tip clearance sizes. In case of TC=4mm, the tip leakage vortex was outflow to downstream of rotor was not confirmed at the small and reference flow-rate conditions. Only at the large flow-rate condition, its outflow to downstream of rotor existed. In case of TC=2mm, overall vortex behaviors were almost the same ones in case of TC=4mm. However, the vortex trace inclined toward more tangential direction. In case of TC=1mm, the clear vortex was not observed for all flow-rate conditions.

An Experimental Study on the a Light Device which Adopt Safety Ultra Constant Dischange Lamp (초정압 방전램프(UCD)를 적용한 안전조명 장치에 관한 연구)

  • Jeong, Poong-Gi;Kim, Young-Chul
    • Journal of the Korea Safety Management & Science
    • /
    • v.12 no.4
    • /
    • pp.41-51
    • /
    • 2010
  • This paper describes the development of various lighting equipment adapting Ultra Constant Discharge Lamp that has newly been on commercial supply in the market. Meeting the required conditions of lighting equipment, various types of UCD Lamp equipment with excellent performances could be successfully developed. In order to provide a guideline for the economical lighting product selection, the analyzed data comparison between Hi-pressure Sodium Lamp which has been the most popular lamp for street lighting and UCD Lamp is provided. The conclusions of the study are made as follows; (1) The performance measurement result of UCD Lamp shows excellent Luminous Efficacy as 108Lm/W, daylight-like Color Rendering Index as 90Ra, and the best operating temperature range as $-50^{\circ}C{\sim}+85^{\circ}C$. Comparing to the Hi-pressure Sodium Lamp, UCD could be evaluated as much superior products. (2) In an assembled status with the lighting fixture (Type STB형-60W), UCD Lamp was tested OK for one hour duration at the temperature range form $-50^{\circ}C$ to $+85^{\circ}C$ and the humidity of 98%. The operation at the extremely low temperature can be an excellent feature to enable the export to the cold temperature regions such as Northern Europe and Russia and the specific applications for defense systems and special industry. (3) As UCD Lamp is a genuine Korea made product following Energy-saving and Eco-friendly policy, it should be appreciated as one of the best $CO^2$ reduction Green product.

An Study on the Optimization of Sub-chamber Geometry in CVC with Sub-chamber (부실을 가진 정적연소기에서 부실형상의 최적화 연구)

  • Park, Jong-Sang;Kang, Byung-Mu;Yeum, Jung-Kuk;Ha, Jong-Yul;Chung, Sung-Sik
    • Journal of ILASS-Korea
    • /
    • v.10 no.2
    • /
    • pp.1-9
    • /
    • 2005
  • An experimental study was carried out to obtain the fundamental data about the effects of radical ignition on premixture combustion. A CVC(constant volume combustor) divided into the sub-chamber and the main chamber was used. Numerous narrow passage holes are arranged between the main chamber and the sub-chamber. The products including radicals generated by spark ignition in tile sub-chamber derives the simultaneous multi-point ignition in the main chamber. We have examined the effects of the sub-chamber volume, the diameter and number of passage holes, and the equivalence $ratio({\Phi})$ on the combustion characteristics by means of burning pressure measurement and flame visualization. In a CVC, the overall burning time including the ignition delay became very short and the maximum burning pressure was slightly increased by the radical ignition(RI) method in comparison with those by the conventional spark ignition(SI) method. Combustible lean limit by RI method is extended by ${\Phi}=0.25$ compared with that by SI method. Also, In cases of charging the number and the diameter for the fixed total cross section of the passage holes, combustion period increased significantly at a sub-chamber with a single hole, but those of the other conditions had almost a similar tendency in the sub-chamber with 4 or more holes. regardless of equivalence ratio. Therefore, it was Proved that a critical cross section exists with the number of passage holes.

  • PDF

Measurement of Performance of High Speed Underwater Vehicle with Solid Rocket Motor(II) (로켓추진을 이용한 고속 수중운동체의 수중 주행성능 측정 결과(II))

  • Yoon, Hyun-Gull;Lee, Hoy-Nam;Cha, Jung-Min;Lim, Seol;Suh, Suhk-Hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.12-17
    • /
    • 2018
  • A natural cavitation-type high-speed underwater vehicle with solid rocket motor is tested, and its speed and running distance are measured. The outputs from pressure sensors on the surface of the vehicle reveal a pressure-time history reflecting the development of supercavitation. Underwater cameras installed on the wall of the test pool record the entire process from the onset of supercavitation to its full development. CNU-SuperCT, based on two-dimensional inviscid theoretical analysis, is used to simulate test results. Considering CNU-SuperCT does not include the control fins of the vehicle, simulation results agree with test results very well. Additionally, pictures from underwater cameras support the test results.

Development of an accelerated life test procedure considering the integrated equivalent load of an implement working pump for an agricultural tractor

  • Moon, Seok-Pyo;Baek, Seung-Min;Chung, Sun-Ok;Park, Young-Jun;Han, Tae-Ho;Kim, Yong-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.1123-1134
    • /
    • 2020
  • The goal of this study was to develop an accelerated life test for an implement working pump for an agricultural tractor. The field experiments were conducted to measure the load of an implement working pump during major agricultural operations such as plow tillage, rotary tillage, baler operations, and wrapping operations. The measurement system for an implement working pump load was constructed using a pressure sensor, the engine rotational speed, and the hitch pump displacement. The measured implement working pump load was calculated as an equivalent load for each agricultural operation using the Palmgren-Miner rule, which is a cumulative damage method. The equivalent load was calculated using the total load data and peak load data when the total data included the operation of an implement working. The annual usage time of the agricultural tractor was applied to develop two integrated equivalent loads. The acceleration factor was calculated to develop an accelerated life test and was calculated from the two integrated equivalent loads, the maximum pressure, and the flow rate conditions of the hitch pump. In Korea, the warranty life of a tractor is 2,736 hours, and the time required for the test to guarantee the operational life of tractors was calculated as 7,561 hours. The acceleration factors were calculated as 453.6 and 38.3, respectively, from the total load data and peak load data. The fatigue test time can be shortened by 16.7 and 197.4 hours according to the result of the acceleration factors.

Geometrical Design and SLIPS Lubrication for Enhancement of Negative-pressure-driven Internal Flow Rate in Metal Pipes (금속관 내부의 음압유량 향상을 위한 기하학적 디자인 및 SLIPS 윤활)

  • Kim, Dong Geun;Jang, Changhwan;Kim, Seong Jae;Kim, Daegyoum;Kim, Sanha
    • Tribology and Lubricants
    • /
    • v.37 no.6
    • /
    • pp.253-260
    • /
    • 2021
  • Metal pipes are used in a wide range of applications, from plumbing systems of large construction sites to small devices such as medical tools. When a liquid is enforced to flow through a metal pipe, a higher flow rate is beneficial for higher efficiency. Using high pressures can enhance the flow rate yet can be harmful for medical applications. Thus, we consider an optimal geometrical design to increase the flow rate in medical devices. In this study, we focus on cannulas, which are widely used small metal pipes for surgical procedures, such as liposuction. We characterize the internal flow rate driven by a negative pressure and explore its dependence on the key design parameters. We quantitatively analyze the suction characteristics for each design variable by conducting computational fluid dynamics simulations. In addition, we build a suction performance measurement system which enables the translational motion of cannulas with pre-programmed velocity for experimental validation. The inner diameter, section geometry, and hole configuration are the design factors to be evaluated. The effect of the inner diameter dominates over that of section geometry and hole configuration. In addition, the circular tube shape provides the maximum flow rate among the elliptical geometries. Once the flow rate exceeds a critical value, the rate becomes independent of the number and width of the suction holes. Finally, we introduce a slippery liquid-infused nanoporous surface (SLIPS) coating using nanoparticles and hydrophobic lubricants that effectively improves the flow rate and antifouling property of cannulas without altering the geometrical design parameter.