• 제목/요약/키워드: Pressure impregnation

Search Result 89, Processing Time 0.023 seconds

Permeability prediction of plain woven fabric by using control volume finite element method (검사체적 방법을 이용한 평직의 투과율 계수 예측)

  • Y. S. Song;J. R. Youn
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.181-183
    • /
    • 2002
  • The accurate permeability for preform is critical to model and design the impregnation of fluid resin in the composite manufacturing process. In this study, the in-plane and transverse permeability for a woven fabric are predicted numerically through the coupled flow model which combines microscopic with macroscopic flow. The microscopic and macroscopic flow which are flows within the micro-unit and macro-unit cell, respectively, are calculated by using 3-D CVFEM(control volume finite element method). To avoid checker-board pressure field and improve the efficiency on numerical computation, A new interpolation function for velocity is proposed on the basis of analytic solutions. The permeability of plain woven fabric is measured through unidirectional flow experiment and compared with the permeability calculated numerically. Based on the good agreement of the results, the relationships between the permeability and the structures of preform such as the fiber volume fraction and stacking effect can be understood. The reverse and the simple stacking are taken in account. Unlike past literatures, this study is based on more realistic unit cell and the improved prediction of permeability can be achieved. It is observed that in-plane flow is more dominant than transverse flow in the real flow through preform and the stacking effect of multi-layered preform is negligible. Consequently, the proposed coupled flow model can be applied to modeling of real composite materials processing.

  • PDF

Manufacturing Fiber-Reinforced Composite Materials Based on PLA (Poly L-Lactide) Resin Using In-Situ Polymerization and Molecular Weight Measurement Using GPC (현장 중합을 이용한 PLA(Poly L-Lactide) 수지 기반 섬유 강화 복합 재료 제조 및 GPC를 이용한 분자량 측정)

  • Seon-Ju Kim;Beom-Joo Lee;Hyeong-Min Yoo
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.28-33
    • /
    • 2023
  • The conventional FRP (Fiber Reinforced Plastic) manufacturing process used thermoset resins for ease of molding but faced the issue of non-recyclability. To address these shortcomings, a new process utilizing thermal plastic resin was developed. However, due to the high viscosity of thermal plastic resin, problems such as fiber deformation and a reduced fiber volume fraction occurred during the high-temperature, high-pressure process. In this study, to overcome the limitations of the conventional process, fiber-reinforced composite materials were manufactured through in-situ polymerization using PLA (Poly L-Lactide) resin in the VA-RTM (Vacuum Assistance Resin Transfer Molding) process. The fiber volume of the produced specimens was calculated, and resin impregnation and porosity were confirmed through optical microscopy. Additionally, molecular weight analysis using GPC (Gel Permission Chromatography) demonstrated improvements over the conventional process and emphasized the essential requirement of temperature control.

Analysis of Thermal Shock Behavior of Cladding with SiCf/SiC Composite Protective Films (SiCf/SiC 복합체 보호막 금속피복관의 열충격 거동 분석)

  • Lee, Dong-Hee;Kim, Weon-Ju;Park, Ji-Yeon;Kim, Dae-Jong;Lee, Hyeon-Geon;Park, Kwang-Heon
    • Composites Research
    • /
    • v.29 no.1
    • /
    • pp.40-44
    • /
    • 2016
  • Nuclear fuel cladding used in a nuclear power plant must possess superior oxidation resistance in the coolant atmosphere of high temperature/high pressure. However, as was the case for the critical LOCA (loss-of-coolant accident) accident that took place in the Fukushima disaster, there is a risk of hydrogen explosion when the nuclear fuel cladding and steam reacts dramatically to cause a rapid high-temperature oxidation accompanied by generation of a huge amount of hydrogen. Hence, an active search is ongoing for an alternative material to be used for manufacturing of nuclear fuel cladding. Studies are currently aimed at improving the safety of this cladding. In particular, ceramic-based nuclear fuel cladding, such as SiC, is receiving much attention due to the excellent radiation resistance, high strength, chemical durability against oxidation and corrosion, and excellent thermal conduction of ceramics. In the present study, cladding with $SiC_f/SiC$ protective films was fabricated using a process that forms a matrix phase by polymer impregnation of polycarbosilane (PCS) after filament-winding the SiC fiber onto an existing Zry-4 cladding tube. It is analyzed the oxidation and microstructure of the metal cladding with $SiC_f/SiC$ composite protective films using a drop tube furnace for thermal shock test.

A Study on the Field Application of Epoxy Impregnation Method Using Elastic Storage Tube (탄성저장관을 활용한 에폭시 주입공법의 현장 적용성에 관한 연구)

  • Kim, Chun-Ho;Lee, Ho-Jin;Kim, Kyoung-Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.72-80
    • /
    • 2018
  • In this research, we tried to investigate the influence of concrete on cracks after applying to the actual construction site using the TPS construction method which can be easily charged by the mechanical injection method. To summarize the results, the following It is as follows. First, in the case of ultrasonic velocity, it can be seen that the ultrasonic wave passes rapidly at an average of about 36 mm / sec as compared with the syringe method when using the TPS method, and in the case of the injection depth, the syringe method In the case of TPS construction method, it showed an excellent tendency that 100% of the water retentive material was charged with all the formulations under a strong injection pressure. In the case of compressive strength, it was shown that the average was increased by 16.8% at the time of using the TPS construction method, and it was found to be structurally superior. Taken together, it is possible to confirm the behavior of the crack repairing agent by improving the quality by improving the strength and confirming the window installation by filling the injection material into the closed space at the crack site when using the TPS method compared with the syringe method. In addition, it is expected that construction time will be improved by shortening the construction period of about 5 days for the TPS construction method construction section 532 m, and usability will be expanded by the crack repair method of concrete structure.

Dimensional Stability and Mechanical Properties of Citric Acid Impregnated Samama Wood (Anthocephalus macrophyllus (Roxb) Havil) at High Curing Temperatures

  • Sarah AUGUSTINA;Sari Delviana MARBUN;SUDARMANTO;NARTO;Deazy Rachmi TRISATYA;Eko Budi SANTOSO;Dhimas PRAMADANI;Nanda Nur AFNI;Tushliha Ayyuni FARIHA;Gabriel Wiwinda L. TOBING;Wasrin SYAFI'I;Tekat Dwi CAHYONO;Eka NOVRIYANTI;Muhammad BULA;Adik BAHANAWAN;Prabu Satria SEJATI;Nam Hun KIM;Wahyu DWIANTO;Philippe GERARDIN
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.431-446
    • /
    • 2023
  • Samama wood (Anthocephalus macrophyllus (Roxb) Havil) is a fast-growing and lesser-utilized wood species that has inferior properties; therefore, its quality needs to be improved. This research aimed to determine the effect of citric acid impregnation at high curing temperatures on the dimensional stability and mechanical properties of wood. Citric acid solution with 10% concentration (w/w) was impregnated into wood samples by vacuum-pressure method (-0.5 cmHg, 30 min; 0.7 MPa, 3 h), followed by curing process at 140℃, 160℃, and 180℃ of temperature for 1 h. In comparison, the other wood samples were heat treated at the same temperatures and time. The results showed that the increase in curing and heat temperatures for both treatments were directly proportional to the dimensional stability, but inversely proportional to the mechanical properties. Citric acid impregnated had higher density, dimensional stability, and mechanical properties, except for modulus of rupture, than that of heat treatment. The optimum temperature is suggested at 160℃ in both treatments.

A Study on the Atmospheric Pressure Control of the VARTM Process for Increasing the Fiber Volume Fraction and Reducing Void (섬유부피분율 증가와 공극 감소를 위한 VARTM 공정의 대기압 제어에 관한 연구)

  • Kwak, Seong-Hun;Kim, Tae-Jun;Tak, Yun-Hak;Kwon, Sung-Il;Lee, Jea-Hyun;Kim, Sang-Yong;Lee, Jong-Cheon
    • Composites Research
    • /
    • v.34 no.2
    • /
    • pp.88-95
    • /
    • 2021
  • VARTM (Vacuum-assisted resin transfer molding) process is a low-cost process technology and affiliated with OoA (Out of Autoclave). Besides, it has been widely used in various fields. However, because of its lower quality than the autoclave process, it isn't easy to apply the VARTM process to the aerospace industry, which requires high reliability. The main problem of the VARTM process is the loss of mechanical properties due to the low fiber volume fraction and high void content in comparison to the autoclave. Therefore, many researchers have studied to reduce void and increase fiber volume fraction. This study examines whether the method of controlling atmospheric pressure could increase the fiber volume fraction and reduce void during the resin impregnation process. Reliability evaluation was confirmed by compressive strength test, fiber volume fraction analysis, and optical microscopy. As a result, it was confirmed that increasing the atmospheric pressure step by step in the VARTM process of impregnating the preform with resin effectively increases the fiber volume fraction and reduces void.

A Study on the Characteristics of VOC Removal by Cordierite Filter Loaded with Catalyst (촉매를 담지한 코디어라이트 필터의 VOC 제거 특성에 관한 연구)

  • Chung, Kyung-Won;Kim, Yong-Nam;Park, Jeong-Hyun;Choi, Beom-Jin;Cho, Eul-Hoon;Lee, Hee-Soo
    • Analytical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.263-269
    • /
    • 2002
  • After porous filters were manufactured using cordierite powder whose mean particle size was 200 ${\mu}m$, they were loaded with catalysts such as Pt, Pd, Cu, Co, La, $V_2O_5$ by vacuum impregnation method. And we investigated the activity of catalysts used for catalytic oxidation of VOC by passing toluene through catalyst-loaded filters. The porous filters had the apparent porosity of 62%, the compressive strength of about 10 MPa and the pressure drop of 15 mmHg at the face velocity of 5 cm/sec. The loading of catalyst decreased the porosity of the filters and increased the pressure drop and the compressive strength of them. Among the catalysts, Pt had the highest activity for catalytic oxidation and could remove more than 90% of toluene at 250 $^{\circ}C$. Below 250 $^{\circ}C$, the content of Pt catalyst had an influence on the conversion of toluene but didn't show any influence above 250 $^{\circ}C$.

Development of Clamped Tesla Superconducting Magnet. (16 Tesla급 고자장 발생용 초전도 마그네트 개발)

  • Kwon, Young-Kil;Cho, Jeon-Wook;Lee, Eon-Yong;Jin, Hong-Bum;Ha, Dong-Woo;Oh, Bong-Hwan;Kim, Hae-Jong;Oh, Sang-Soo;Ryu, Kang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.199-201
    • /
    • 1996
  • The design and manufacturing results of a 16 tesla/45mm bore superconducting magnet is presented. The system consists of an 8.2 tesla(at 4.2K) outer NbTi coil with a bore I.D. of 261mm, a winding O.D. of 453mm and the length of 430mm which is connected in series with a 5.6 tesla(at 4.2K) middle and a 4.7 tesla(at 4.2K) inner insert coil constructed of multifilamentary $Nb_3Sn$. The middle and inner insert coil are reacted after winding. Also, epoxy impregnation is accomplished at $Nb_3Sn$ coils using a low viscosity crack resistant epoxy which is forced into the coil with a series of vacuum and over atmosphere pressure cycle.

  • PDF

Efficiency of catalyst-coated ceramic filter with acid treatment (촉매담지 세라믹 필터의 표면 산처리 효과)

  • Cho, Eul-Hoon;Suh, Kwang-Suck;Kim, Su-Hyo;Shin, Min-Chul;Shin, Byeong-Kil;Kim, Jin-Seong;Lee, Hee-Soo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.2
    • /
    • pp.91-95
    • /
    • 2008
  • Ceramic filter was prepared using cordierite powder and it was coated with $V_2O_5$ catalyst by vacuum impregnation method. The filter had the apparent porosity of 58 %, the compressive strength of 10 MPa and the pressure drop of 1200 Pa at the face velocity of 5 cm/see and 400$^{\circ}C$. $NO_x$ removal efficiency of only $V_2O_5$ coated on cordierite filter showed the removal efficiency of 80 %, and it was improved up to 90 % by increasing specific surface area of filter elements from the acid treatment. The high surface area is due to the removal of Mg and Al ions from the silicate structure and subsequent generation of free amorphous silicate on the surface of the cordierite.

Fabrication and Inertia Dynamic Friction Properties of Pitch-based Carbon-Carbon Composites

  • Lee, Jinyong;Suhr, Dong-Soo;Lim, Yun-Soo;Lee, Seung-Goo;Park, Jong-Kyoo
    • The Korean Journal of Ceramics
    • /
    • v.4 no.3
    • /
    • pp.193-198
    • /
    • 1998
  • This paper presents the effects of an initial braking velocity, a braking pressure, and the number of braking stop on the tribological behaviors for the three different C-C composites using an inertia dynamic-friction tester. The C-C composites were prepared through the processes of several cycles of pitch impregnation/carbonization with different friction surface texture such as continuous 8-harness satin fabric (ADD-1), chopped fiber (ADD-2) and chopped fiber (ADD-3) having higher fiber volume fraction on friction than ADD-2 by about 10%. ADD-1 exhibited a higher fraction coefficient (0.41~0.33) than those of ADD-2 and ADD-3 (0.32~0.26) under the various initial braking velocities and braking pressures. The fraction coefficients decreased with increasing the initial velocity and the braking pressures. Wear rate by the thickness change after every 25 stop indicated that ADD-2 and ADD-3 having 1.7~2.7 $\mu\textrm{m}$/stop/pair were much lower than that of ADD-1 showing 5.0~6.5 $\mu\textrm{m}$/stop/pair. All specimens showed a little bit lower wear rate during the middle stage than the initial and latter stages among 100 braking stops. ADD-1 showed higher friction coefficient and wear rate due to the active pull-out of the fibers, evidenced by thicker were film and wear debrises.

  • PDF