• Title/Summary/Keyword: Pressure force

Search Result 2,831, Processing Time 0.033 seconds

Numerical study on flow characteristics at dividing open-channel with changing bifurcation angle using TELEMAC-2D (TELEMAC-2D모형을 이용한 분류각 변화에 따른 개수로 흐름특성변화 수치모의 연구)

  • Jung, Daejin;Jang, Chang-Lae;Jung, Kwansue
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.8
    • /
    • pp.617-626
    • /
    • 2020
  • This study investigates changes of bifurcation discharge ratio, flow velocity distributions and characteristics of separation zone due to variation of bifurcation angle by using TELEMAC-2D model. When the bifurcation angle is reduced from 90° to 45° without changing the boundary conditions, the bifurcation discharge ratio increased by 1.5 times from 0.523 to 0.785 because of increasing the radius of curvatures, the inertia force of the downstream flow, and the pressure gradient by the downstream boundary conditions. The bifurcation discharge ratio increases non-linearly whenever the bifurcation angle decreases by 15° intervals from 90° to 45° in flow with the upstream Froude number of 0.45 to 0.74. In flow with a maximum Froude number of 0.74, the rate of increase for bifurcation discharge ratio is 31.1% and the minimum value. When the Froude number is 0.58, the bifurcation discharge ratio is 0.7 or less, and the maximum rate of increase for that ratio is 53.5%. As the upstream Froude number decreases less than 0.58, the bifurcation discharge ratio exceeds 0.7, and the rate of increase decreases. When the upstream Froude number is 0.4 higher, the dimensionless width and length changing ratio of the separation zone are about 2.56 and 5.5 times higher than in 0.4 or less.

Effect of Periodic $N_2$-back-flushing in Paper wastewater Treatment using Carbon Ceramic Ultrafiltration and Microfiltration Membranes (탄소계 세라믹 한외 및 정밀 여과막으로 제지폐수 처리시 주기적 질소 역세척의 효과)

  • 황현정;박진용
    • Membrane Journal
    • /
    • v.12 no.1
    • /
    • pp.8-20
    • /
    • 2002
  • In this study using $N_2$-back flushing, which wwas not the general back-flushing method of membranes, the discharged wastewater from a paper plant was filtrated by 4 kinds of tubular carbon ceramic ultrafiltration membranes. We could in vestigate effects of $N_2$-back flushing period, transmembrane pressure (TMP)and flow rate and find optimal operating conditions. The $N_2$-back flushing time (BT) was fixed at 40 sec, filtration times (FT) were changed in 4~32 min, TNP in $1.0~3.0kg_f/cm^2$ the flow celocities in 0.53~1.09cm/s. The optimal conditions were discussed in the viewpoints of dimensionless permeate flux ($J/J_0$), toal permeate volume ($V_T$) and resistance of membrane fouling ($R_f$). Optimal back-flushing period was BT/FT=0.167 (FT=8 min ), in which more $V_T$ was obtained than that in BT/FT=0.083 (FT=4 min) which was the most friquent back-flushing condition. Then rising TMP should increase the driving force, and more $V_T$ could be accumulated. And rising flow rate should decrease membrane fouling increase permeate flux, and more $V_T$could be produced. Average rejection rates of pollutants were higher than 95% for turbidity and 45~83% for $COD_{Cr}$, but rejection rates of total dissolved solid (TDS) were lower than 10%.

Biomechanical Comparison of Inter-fragmentary Compression Pressures : Lag Screw versus Herbert Screw for Anterior Odontoid Screw Fixation

  • Park, Jin-Woo;Kim, Kyoung-Tae;Sung, Joo-Kyung;Park, Seong-Hyun;Seong, Ki-Woong;Cho, Dae-Chul
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.5
    • /
    • pp.498-503
    • /
    • 2017
  • Objective : The purpose of the present study was to compare inter-fragmentary compression pressures after fixation of a simulated type II odontoid fracture with the headless compression Herbert screw and a half threaded cannulated lag screw. Methods : We compared inter-fragmentary compression pressures between 40- and 45-mm long 4.5-mm Herbert screws (n=8 and n=9, respectively) and 40- and 45-mm long 4.0-mm cannulated lag screws (n=7 and n=10, respectively) after insertion into rigid polyurethane foam test blocks (Sawbones, Vashon, WA, USA). A washer load cell was placed between the two segments of test blocks to measure the compression force. Because the total length of each foam block was 42 mm, the 40-mm screws were embedded in the cancellous foam, while the 45-mm screws penetrated the denser cortical foam at the bottom. This enabled us to compare inter-fragmentary compression pressures as they are affected by the penetration of the apical dens tip by the screws. Results : The mean compression pressures of the 40- and 45-mm long cannulated lag screws were $50.48{\pm}1.20N$ and $53.88{\pm}1.02N$, respectively, which was not statistically significant (p=0.0551). The mean compression pressures of the 40-mm long Herbert screw was $52.82{\pm}2.17N$, and was not statistically significant compared with the 40-mm long cannulated lag screw (p=0.3679). However, 45-mm Herbert screw had significantly higher mean compression pressure ($60.68{\pm}2.03N$) than both the 45-mm cannulated lag screw and the 40-mm Herbert screw (p=0.0049 and p=0.0246, respectively). Conclusion : Our results showed that inter-fragmentary compression pressures of the Herbert screw were significantly increased when the screw tip penetrated the opposite dens cortical foam. This can support the generally recommended surgical technique that, in order to facilitate maximal reduction of the fracture gap using anterior odontoid screws, it is essential to penetrate the apical dens tip with the screw.

A study on the Frequency Analysis Function of the Auricle Using A Notch Filter

  • Park, Dong-Cheol
    • International journal of advanced smart convergence
    • /
    • v.10 no.4
    • /
    • pp.241-255
    • /
    • 2021
  • The human auricle is the first part to receive sound from the outside. In this part, the frequency range of human recognizable form is divided and organized. In this study, we propose modeling by applying a single sound source to the surface of the human auricle. This means that when the sound pressure of a low frequency (low frequency) sound enters the pinna, the impedance felt at the tip of a part of the non-linear surface of the pinna is mainly due to the tensile force at the end of the part of the non-linear surface of the pinna. By expressing the situation of moving at a very small speed, the characteristic impedance of the pinna was confirmed to be negative infinity, and it was also confirmed that the speed at the tip of a part of the non-linear surface of the pinna was 0 in the anti-resonance state. It was found that the wave propagation phenomenon that determines the characteristics of the filter is determined by how large the wavelength, kL, is compared to the length of the tip of a part of the non-straight surface of the pinna. Humans first receive sounds from outside through their ears. The auricle is non-linear and has a curved shape, and it is known that it analyzes frequencies while receiving external sounds. The human ear has an audible frequency range of 20Hz - 20,000Hz. Through the study, we applied the characteristics of the notch filter to hypothesize that the human audible frequency range is separated from the auricle, and applied filter theory to analyze it, and as a result, meaningful results were obtained. The curved part and the inner part of the auricle function as a trumpet, collecting sounds, and at the same time amplifying the weak sound of a specific band. The point was found and the shape of the envelope detected in the auricle was found. Selectivity for selecting sounds coming from the outside is the formula of the pinna that implements the function of Q. The function of distinguishing human-recognizable sound from the pinna from low to high through frequency analysis is performed in the pinna, and the 2-3kHz area, where human hearing threshold is the most sensitive, is also the acoustic impedance of the most recessed area of the pinna. It can be seen that starting from.

Enhancement of combustion efficiency of a air-cooled combustor system with single F.D. Fan Using CFD (전산유체역학을 이용한 단일 송풍기가 적용된 공냉식 연소설비의 효율개선)

  • Kim, Min-Choul;Shon, Byung-Hyun;Lee, Jae-Jeong;Park, Hung-Suck
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.460-468
    • /
    • 2021
  • This study investigated the enhanced combustion efficiency of an "air-cooled combustion system" with single F.D. fan, and performed a numerical analysis for the operation and design conditions to increase the combustion efficiency. The combustion efficiency in an actual combustor was compared before and after the structure modification. Numerical analysis for application of a single fan revealed the difficulty of forming a turbulence for circular combustion conditions. This is because the supply ratio of combustion air supplied into 2 flow paths becomes irregular in the combustion furnace due to a change in friction force and pressure in each flow path. Subsequently, two methods of supplying air into the combustion furnace were analyzed numerically to obtain the optimal combustion conditions of an air-cooled combustion system. The first method involved injecting the preheated combustion air after a 180~360 degree rotation from the outer wall, whereas in the second method, the combustion air was injected into the combustion furnace in a tangential direction after primary heat exchange outside the combustion furnace, by applying a rotatable vane structure in the combustion furnace. Results reveal that application of a single F.D. fan to the air injection into a rotatable combustion furnace is desirable for optimization of the combustion conditions for applying a duct structure having a dual cooling wall for the cooling of the outer wall of the combustion furnace, and for maintaining perfect mixing in the combustion furnace. We therefore confirmed enhanced combustion efficiency by comparing the actual combustion efficiency before and after structure modification.

A Study on the Optimal Pre-loading Calculation of Strut of Retaining Wall through Numerical Interpretation (수치해석을 통한 흙막이벽체 버팀보의 최적 선행하중 산정에 관한 연구)

  • Moon, In Jong;Jang, Seung Ju;Lee, Kang Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.2
    • /
    • pp.45-56
    • /
    • 2021
  • As the utilization of the underground space is activated, deep excavation of ground has been conducted for the installation of underground structures, the earth retaining wall has widely used to minimize deformation of the excavated ground. In particular, as deep excavation is actively progressing in an urban area where structures are concentrated, methods to minimize the deformation of wall have been devised to prevent damage to the structure adjacent to the wall, and one of these methods is the pre-loading method. This method is a method of suppressing the deformation of wall by actively applying a load on the strut to be installed in wall, and research on this method has been conducted recently. However, although related studies have been actively conducted, the management standard for the pre-loading of bracing has not been clearly presented until now. In addition, since the working force in the strut may increase depending on the depth of excavation or the soil condition of the backfill, the magnitude of the pre-loading that can be applied to the brace may decrease. Nevertheless, the magnitude of the pre-loading (more than 50% of the working load) proposed by the previous research results has been uniformly applied to the strut. In this study, 3D finite element analysis was performed to evaluate the application range of the pre-loading of H-beam strut according to the soil conditions of backfill. As a result of the analysis, it was found that there is a very high possibility that a problem may occur in the stability of the structure of strut due to the earth pressure and the pre-loading when the soil condition is weak and deep excavation proceeds. And it was found that the application range of the pre-loading was 5%~70% of the working load in strut.

Current Concepts of Degenerative Disc Disease -A Significance of Endplate- (퇴행성 추간판 질환의 최신 지견 -종판의 중요성-)

  • Soh, Jaewan;Jang, Hae-Dong;Shin, Byung-Joon
    • Journal of the Korean Orthopaedic Association
    • /
    • v.56 no.4
    • /
    • pp.283-293
    • /
    • 2021
  • Degenerative disc disease has traditionally been thought of as low back pain caused by changes in the nucleus pulposus and annulus fibrous, in recent studies, however, changes in the upper and lower endplates cause degeneration of the disc, resulting in mechanical pressure, inflammatory reactions and low back pain. Recently, the bone marrow of the vertebral body-endplate-nucleus pulposus and annulus fibrous were considered as a single unit, and the relationship was explained. Once the endplate is damaged, it eventually aggravates the degeneration of the bone marrow, nucleus pulposus, and annulus fibrosus. In this process, the compression force of the annulus fibrosus increases, and an inflammatory reaction occurs due to inflammatory mediators. Hence, the sinuvertebral nerves and the basivertebral nerves are stimulated to cause back pain. If these changes become chronic, degenerative changes such as Modic changes occur in the bone marrow in the vertebrae. Finally, in the case of degenerative intervertebral disc disease, the bone marrow of the vertebral body-endplate-nucleus pulposus and annulus fibrous need to be considered as a single unit. Therefore, when treating patients with chronic low back pain, it is necessary to consider the changes in the nucleus pulposus and annulus fibrosus and a lesion of the endplate.

Development of the Seepage Flow Monitoring Method by the Hydraulic Head Loss Rate (수두손실률에 의한 침투류 감시기법 개발)

  • Eam, Sung-Hoon;Kang, Byung-Yoon;Kim, Ki-Wan;Koo, Ja-Ho;Kang, Shin-Ik;Cha, Hung-Youn;Jung, Jae-Hyun;Cho, Jun-Ho;Kim, Ki-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.5
    • /
    • pp.37-48
    • /
    • 2010
  • In this study, the seepage flow monitoring method by the hydraulic head loss rate was developed for the purpose of application to offshore construction site enclosed by cofferdams in which seepage force varies periodically. The amount of the hydraulic head loss rate newly defined in this graph was in a range between 0 and 1. The zero of the rate means the existence of flow with no seepage resistance. The 1 of the rate means no seepage flow through the ground. The closer to 1 the coefficient of determinant in the hydraulic head loss graph is, the more the ground through which seepage water flows is stable. The closer to 0 the coefficient of determinant in the hydraulic head loss graph is, the more the ground through which seepage water flows was unstable and the higher the possibilities of existence of empty space or of occurrence of piping on the seepage flow pass in the ground is. The hydraulic head loss graph makes it possible to monitor sensitively the situation of seepage flow state, and the graph helps to understand easily the seepage flow state at the specific section on the whole cofferdam.

Experimental Assessment of Reduction in the Negative Skin Friction Using a Pile with a Member Responding to Ground Deformation (지반 변형 대응 부재를 적용한 말뚝의 부마찰력 저감 성능의 실험적 검증)

  • Shin, Sehee;Lee, Haklin;Woo, Sang Inn
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.3
    • /
    • pp.5-16
    • /
    • 2022
  • Ground in extremely cold and hot regions can sink by various environmental factors. Ground settlement can generate the negative skin friction to pile shaft, increase the base load of pile, and cut the stability of the pile. This study proposed a member responding ground deformation which can be inserted inside the pile. The member slightly compresses according to the ground settlement to reduce the negative skin friction. As the member materials, this study considered spring and spring-dashpot. To assess the ability of the member, the present research performed model tests for piles with or without the member within settled ground. In the model tests, the base load, total shaft resistance, and horizontal earth pressure were monitored and analyzed. Experimental results show that the pile with spring member can reduce the negative skin friction under small settlement conditions whereas it acts similar to the pile without the member under large settlement conditions as the spring was no longer compressed. However, the pile with the spring-dashpot member can reduce the negative skin friction continuously upon the ground settlement as the dashpot delays the load transfer to the spring and locates friction force on the unloading path.

Simulation-based Education Model for PID Control Learning (PID 제어 학습을 위한 시뮬레이션 기반의 교육 모델)

  • Seo, Hyeon-Ho;Kim, Jae-Woong;Park, Seong-Hyun
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.3
    • /
    • pp.286-293
    • /
    • 2022
  • Recently, the importance of elemental technologies constituting smart factories is increasing due to the 4th Industrial Revolution, and simulation is widely used as a tool to learn these technologies. In particular, PID control is an automatic control technique used in various fields, and most of them analyze mathematical models in certain situations or research on application development with built-in controllers. In actual educational environment requires PID simulator training as well as PID control principles. In this paper, we propose a model that enables education and practice of various PID controls through 3D simulation. The proposed model implemented virtual balls and Fan and implemented PID control by configuring a system so that the force can be lifted by the air pressure generated in the Fan. At this time, the height of the ball was expressed in a graph according to each gain value of the PID controller and then compared with the actual system, and through this, satisfactory results sufficiently applicable to the actual class were confirmed. Through the proposed model, it is expected that the rapidly increasing elemental technology of smart factories can be used in various ways in a remote classroom environment.