The assessment of sodium intake is complex because of the variety and nature of dietary sodium. This study intended to develop a dish frequency questionnaire (DFQ) for estimating the habitual sodium intake and a short DFQ for screening subjects with high or low sodium intake. For DFQ112, one hundred and twelve dish items were selected based on the information of sodium content of the one serving size and consumption frequency. Frequency of consumption was determined through nine categories ranging from more than 3 times a day to almost never to indicate how often the specified amount of each food item was consumed during the past 6 months. One hundred seventy one adults (male: 78, female: 93) who visited hypertension or health examination clinic participated in the validation study. DFQ55 was developed from DFQ112 by omitting the food items not frequently consumed, selecting the dish items that showed higher sodium content per one portion size and higher consumption frequency. To develop a short DFQs for classifying subjects with low or high sodium intakes, the weighed score according to the sodium content of one protion size was given to each dish item of DFQ25 or DFQ14 and multiplied with the consumption frequency score. A sum index of all the dish items was formed and called sodium index (Na index). For validation study the DFQ112, 2-day diet record and one 24-hour urine collection were analyzed to estimate sodium intakes. The sodium intakes estimated with DFQ112 and 24-h urine analysis showed
The Government of South Korea has continued its effort to fixate virtuous circle of economic growth and climate change response to cope with international demands and pressure to commitment for greenhouse gas reduction effectively. Nationally, Korean Government has established "Enforcement of the Framework Act on Low carbon, Green Growth"(2010. 4. 13) to implement national mid-term GHG mitigation goal(30% reduction by 2020 compare to BAU), which established the foundation for phased GHG mitigation by setting up the sectoral and industrial goal, adopting GHG and Energy Target Management System. Also, follow-up measures are taken such as planning and control of mid-term and short-term mitigation target by detailed analysis of potential mitigation of sector and industry, building up the infrastructure for periodic and systematic analysis of target management. Likewise, it is required to establish more accurate, reliable and detailed sectoral GHG inventory for successfully establishment and implement the frame act. In comparison to the
Remotely sensed vegetation indices (VIs) are empirically related with gross primary productivity (GPP) in various spatio-temporal scales. The uncertainties in GPP-VI relationship increase with temporal resolution. Uncertainty also exists in the eddy covariance (EC)-based estimation of GPP, arising from the partitioning of the measured net ecosystem CO2 exchange (NEE) into GPP and ecosystem respiration (RE). For two forests and two agricultural sites, we correlated the EC-derived GPP in various time scales with three different near-surface remotely sensed VIs: (1) normalized difference vegetation index (NDVI), (2) enhanced vegetation index (EVI), and (3) near infrared reflectance from vegetation (NIRv) along with NIRvP (i.e., NIRv multiplied by photosynthetically active radiation, PAR). Among the compared VIs, NIRvP showed highest correlation with half-hourly and monthly GPP at all sites. The NIRvP was used to test the reliability of GPP derived by two different NEE partitioning methods: (1) original KoFlux methods (GPPOri) and (2) machine-learning based method (GPPANN). GPPANN showed higher correlation with NIRvP at half-hourly time scale, but there was no difference at daily time scale. The NIRvP-GPP correlation was lower under clear sky conditions due to co-limitation of GPP by other environmental conditions such as air temperature, vapor pressure deficit and soil moisture. However, under cloudy conditions when photosynthesis is mainly limited by radiation, the use of NIRvP was more promising to test the credibility of NEE partitioning methods. Despite the necessity of further analyses, the results suggest that NIRvP can be used as the proxy of GPP at high temporal-scale. However, for the VIs-based GPP estimation with high temporal resolution to be meaningful, complex systems-based analysis methods (related to systems thinking and self-organization that goes beyond the empirical VIs-GPP relationship) should be developed.
The thermodynamic models, PC-SAFT (Perturbed-Chain Statistical Associated Fluid Theory) state equation and the Two-model approach liquid activity coefficient model NRTL (Non Random Two Liquid) + Henry + Peng-Robinson, for modeling the Rectisol process using methanol aqueous solution as the
Arsenopyrite in arsenic and polymetallic ores from calcic Fe-W skarn deposit of the Ulsan mine, Republic of Korea, has been investigated by means of electron microprobe analysis and X-ray diffractometry. As a result, it is revealed that the Ulsan arsenopyrite may be classified into the following three species with different generation on the basis of its mode of occurrence, chronological order during polymetallic mineralization and chemical composition; arsenopyrites I, II and III. 1) Arsenopyrite I-(Ni, Co)-bearing species belonging to the oldest generation, which has crystallized together with (Ni, Co)-arsenides and -sulpharsenides in the early stage of polymetallic mineralization. In rare cases, it contains a negligible amount of antimony. It occurs usually as discrete grains with irregular outline, showing rarely subhedral form, and is diffused in skarn zone. The maximum contents of nickel and cobalt are 10.04 Ni and 2.45 Co (in weight percent). Occasionally, it shows compositional zoning with narrow rim of lower (Ni+Co) content. 2) Arsenopyrite II-arsenian species, in which (Ni+Co) content is almost negligible, may occur widely in arsenic ores, and its crystallization has followed that of arsenopyrite I. It usually shows subhedral to euhedral form and is closely associated with
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70
There exist various types of the WEC (Wave Energy Converter), and among them, the point absorber is the most popularly investigated type. However, it is difficult to find examples of systematically measured data analysis for the design of the point absorber type of power buoy in the world. The study investigates the wave load acting on the point absorber type resonance power buoy wave energy extraction system proposed by Kweon et al. (2010). This study analyzes the time series spectra with respect to the three-year wave data (2002.05.01~2005.03.29) measured using the pressure type wave gage at the seaside of north breakwater of Hupo harbor located in the east coast of the Korean peninsula. From the analysis results, it could be deduced that monthly wave period and wave height variations were apparent and that monthly wave powers were unevenly distributed annually. The average wave steepness of the usual wave was 0.01, lower than that of the wind wave range of 0.02-0.04. The mode of the average wave period has the value of 5.31 sec, while mode of the wave height of the applicable period has the value of 0.29 m. The occurrence probability of the peak period is a bi-modal type, with a mode value between 4.47 sec and 6.78 sec. The design wave period can be selected from the above four values of 0.01, 5.31, 4.47, 6.78. About 95% of measured wave heights are below 1 m. Through this study, it was found that a resonance power buoy system is necessary in coastal areas with low wave energy and that the optimal design for overcoming the uneven monthly distribution of wave power is a major task in the development of a WEF (Wave Energy Farm). Finding it impossible to express the average spectrum of the usual wave in terms of the standard spectrum equation, this study proposes a new spectrum equation with three parameters, with which basic data for the prediction of the power production using wave power buoy and the fatigue analysis of the system can be given.
In February 2008, high storm waves due to a developed atmospheric low pressure system propagating from the west off Hokkaido, Japan, to the south and southwest throughout the East Sea (ES) caused extensive damages along the central coast of Japan and along the east coast of Korea. This study consists of two parts. In the first part, we estimate extreme storm wave characteristics in the Toyama Bay where heavy coastal damages occurred, using a non-hydrostatic meteorological model and a spectral wave model by considering the extreme conditions for two factors for wind wave growth, such as wind intensity and duration. The estimated extreme significant wave height and corresponding wave period were 6.78 m and 18.28 sec, respectively, at the Fushiki Toyama. In the second part, we perform numerical experiments on wave-structure interaction in the Fushiki Port, Toyama Bay, where the long North-Breakwater was heavily damaged by the storm waves in February 2008. The experiments are conducted using a non-linear shallow-water equation model with adaptive mesh refinement (AMR) and wet-dry scheme. The estimated extreme storm waves of 6.78 m and 18.28 sec are used for incident wave profile. The results show that the Fushiki Port would be overtopped and flooded by extreme storm waves if the North-Breakwater does not function properly after being damaged. Also the storm waves would overtop seawalls and sidewalls of the Manyou Pier behind the North-Breakwater. The results also depict that refined meshes by AMR method with wet-dry scheme applied capture the coastline and coastal structure well while keeping the computational load efficiently.
Natural or man-made disaster has been expected to be one of the potential themes that can integrate human geography and physical geography. Typhoons like Rusa and Maemi caused great loss to insurance companies as well as public sectors. We have implemented a natural disaster management system for a private insurance company to produce better estimation of hazards from high wind as well as calculate vulnerability of damage. Climatic gauge sites and addresses of contract's objects were geo-coded and the pressure values along all the typhoon tracks were vectorized into line objects. National GIS topog raphic maps with scale of 1: 5,000 were updated into base maps and digital elevation model with 30 meter space and land cover maps were used for reflecting roughness of land to wind velocity. All the data are converted to grid coverage with