• Title/Summary/Keyword: Pressure estimation

Search Result 995, Processing Time 0.035 seconds

Quantitative Estimation of Radiation Damage in Reactor Pressure Vessel Steels by Using Multiscale Modeling (멀티스케일 모델링을 이용한 압력용기강의 조사손상 정량예측)

  • Lee, Gyeong-Geun;Kwon, Junhyun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.10 no.1
    • /
    • pp.113-121
    • /
    • 2014
  • In this work, an integrated model including molecular dynamics and chemical rate theory was implemented to calculate the growth of point defect clusters(PDC) and copper-rich precipitates(CRP) which could change the mechanical properties of reactor pressure vessel(RPV) steels in a nuclear power plant. A number of time-dependent differential equations were established and numerically integrated to estimate the evolution of irradiation defects. The calculation showed that the concentration of the vacancies was higher than that of the self-interstitial atoms. The higher concentration of vacancies induced a formation of the CRPs in the later stage. The size of the CRPs was used to estimate the mechanical property changes in RPV steels, as is the same case with the PDCs. The calculation results were compared with the measured values of yield strength change and Charpy V-notch transition temperature shift, which were obtained from the surveillance test data of Korean light water reactors(LWRs). The estimated values were in fair agreement with the experimental results in spite of the uncertainty of the modeling parameters.

Design of Irrigation Pumping System Controller for Operational Instrument of Articulation (관절경 수술을 위한 관주(灌注)시스 (Irrigation Pumping System) 제어기의 개발)

  • 김민수;이순걸
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1294-1297
    • /
    • 2003
  • With the development of medical field, many kinds of operations have been performed on human articulation. Arthroscopic surgery, which has Irrigation Pumping System for security of operator vision and washing spaces of operation, has been used for more merits than others. In this paper, it is presented that the research on a reliable control algorithm of the pumping system instrument for arthroscopic surgery. Before clinical operation, the flexible artificial articulation model is used for realizing the model the most same as human's and the algorithm has been exploited for it. This system is considered of the following; limited sensing point, dynamic effect by compliance, time delay by fluid flow and so on. The system is composed with a pressure controller, a regulator for keeping air pressure, an airtight tank that can have distilled water packs, artificial articulation and a measuring system, and has controlled by the feedback of pressure sensor on the artificial articulation. Also the system has applied to Smith Predictor for time delay and the parameter estimation method for the most suitable system with both the experiment data and modeling. In this paper, the pressure error that is between an air pressure tank and an artificial articulation was measured so that the system could be presumed and then the controller had developed for performing State-Feedback. Finally, the controller with a real microprocessor has realized. The confidence of system can be proved by applying this control algorithm to an artificial articulation experiment material.

  • PDF

Development of a correlation on the convective heat transfer of supercritical pressure $CO_2$ vertically upward flowing in a circular tube (원형관에서 수직상향유동 초임계압 $CO_2$의 대류열전달 상관식 개발)

  • Kang, Deog-Ji;Kim, Hwan-Yeol;Bae, Yun-Young
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.292-295
    • /
    • 2008
  • In a SCWR (SuperCritical pressure Water cooled Reactor), the coolant temperature initially at below the pseudo-critical temperature at the bottom of a reactor core increases as the coolant flows upward through the sub-channels of the fuel assemblies, and it finally becomes higher than the pseudo-critical temperature when it leaves the reactor core. At certain conditions, heat transfer deterioration occurs near the pseudo-critical temperature and it may cause a drastic rise of the fuel surface temperature resulting a fuel failure. Therefore, an accurate estimation of the heat transfer coefficient is very important for the thermal-hydraulic design of a reactor core. An experiment on heat transfer to the vertically upward flowing $CO_2$ at a supercritical pressure in a circular tube were performed at KAERI. The internal diameter of the test section is 6.32 mm, which corresponds to the hydraulic diameter of a sub-channel in the conceptional design proposed by KAERI. The test range of the mass flux is 285 to 1200 kg/m$^2$s and the maximum heat flux is 170 kW/m$^2$. The inlet pressure is maintained at 8.12 MPa, which is 1.1 times the critical pressure. A new correlation, which covers both the normal and deterioration heat transfer regimes was proposed and compared with the estimations by exiting correlations.

  • PDF

A Study on the Prediction & Transformation of Blasting Noise for Environmental Regulation Standard (발파소음의 예측기법과 환경규제 기준으로의 변환 연구)

  • 김남수;양형식
    • Explosives and Blasting
    • /
    • v.18 no.2
    • /
    • pp.14-22
    • /
    • 2000
  • The estimation of proper prediction method and the alteration of transformation method of environmental regulation standard were carried out by measuring blasting noise in construction field. The correlation of scaled distance with sound pressure level were better than with sound level, but it was proved to be difficult to control blasting noise because the correlation factor was too 1ow. three methods to transform sound pressure levee to sound level were examined. The method is the transformation by correlation equation of sound pressure level and sound level which are measured at the same time, and simplified transformation of A-weighting network corresponding to dominant frequency, and the transformation of sound pressure level by FFT. There were many errors to transform. The best effective method is the transformation using correlation equation of sound pressure level and sound level which are measured at the same time.

  • PDF

Structure Parameter Change Estimation of a Forward Osmosis Membrane Under Pressurized Conditions in Pressure-assisted Forward Osmosis (PAFO) (가압형 정삼투 시 압력에 따른 정삼투막의 Structure Parameter 변화양상 예측)

  • Kook, Seungho;Kim, Sung-Jo;Lee, Jinwoo;Hwang, Moonhyun;Kim, In S.
    • Membrane Journal
    • /
    • v.26 no.3
    • /
    • pp.187-196
    • /
    • 2016
  • Pressure-assisted forward osmosis (PAFO) process has recently been under spotlight for its potential to improve forward osmosis (FO) process performance by applying low hydraulic pressure on the feed side. Structure parameter, one of the governing factors in estimating water flux and solute flux across FO membranes in the solution-diffusion model (S-D model), determines solute resistivity in FO and PAFO processes. This study aims to estimate the trend of structure parameter change with respect to varying additional hydraulic pressure condition in PAFO.

Behaviour of Pulsating Flow in the Jetflow Region through Cylindrical Chokes (원통형 초크의 분류영역에서 맥동유동의 거동)

  • Moh, Y.W.;Yoo, Y.T.;Hong, S.S.;Wee, K.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.47-55
    • /
    • 1995
  • Cylindrical chokes are used widely as components of hydraulic equipments. The dynamic charac teristics between flowrate and pressure drop through the cylindrical chokes were discussed by the frequency characteristics of the chokes. It was assumed no pressure recovery occured at the downstream neighborhood of the choke. The pulsating jetflow from outlet of cylindrical chokes shows very complex behaviours which are quite different from the steady jetflow but it is not clarified quantitatively. In order to utilize the chokes as a flowmeter, it is indispensable to discuss the estimation of the dynamics of pressure drop in the downstream jetflow region of cylindrical chokes. In this experimental study, the dynamic behaviours of the jetflow in the downstream region of cylindrical chokes are investigated precisely by using flow visualization. In the results of experimental sutdy, it is clarified that the retachment length depended on pressure wave is compared with it depended on velocity wave.

  • PDF

Estimation of 3D active earth pressure under nonlinear strength condition

  • Zhang, D.B.;Jiang, Y.;Yang, X.L.
    • Geomechanics and Engineering
    • /
    • v.17 no.6
    • /
    • pp.515-525
    • /
    • 2019
  • The calculation of active earth pressure behind retaining wall is a typical three-dimensional (3D) problem with spatial effects. With the help of limit analysis, this paper firstly deduces the internal energy dissipation power equations and various external forces power equations of the 3D retaining wall under the nonlinear strength condition, such as to establish the work-energy balance equation. The pseudo-static method is used to consider the effect of earthquake on active earth pressure in horizontal state. The failure mode is a 3D curvilinear cone failure mechanism. For the different width of the retaining wall, the plane strain block is inserted in the symmetric plane. By optimizing all parameters, the maximum value of active earth pressure is calculated. In order to verify the validity of the new expressions obtained by the paper, the solutions are compared with previously published solutions. Agreement shows that the new expressions are effective. The results of different parameters are given in the forms of figures to analysis the influence caused by nonlinear strength parameters.

Pixel level prediction of dynamic pressure distribution on hull surface based on convolutional neural network (합성곱 신경망 기반 선체 표면 압력 분포의 픽셀 수준 예측)

  • Kim, Dayeon;Seo, Jeongbeom;Lee, Inwon
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.2
    • /
    • pp.78-85
    • /
    • 2022
  • In these days, the rapid development in prediction technology using artificial intelligent is being applied in a variety of engineering fields. Especially, dimensionality reduction technologies such as autoencoder and convolutional neural network have enabled the classification and regression of high-dimensional data. In particular, pixel level prediction technology enables semantic segmentation (fine-grained classification), or physical value prediction for each pixel such as depth or surface normal estimation. In this study, the pressure distribution of the ship's surface was estimated at the pixel level based on the artificial neural network. First, a potential flow analysis was performed on the hull form data generated by transforming the baseline hull form data to construct 429 datasets for learning. Thereafter, a neural network with a U-shape structure was configured to learn the pressure value at the node position of the pretreated hull form. As a result, for the hull form included in training set, it was confirmed that the neural network can make a good prediction for pressure distribution. But in case of container ship, which is not included and have different characteristics, the network couldn't give a reasonable result.

Buckling Analysis of Circular Cylinders with Initial Imperfection Subjected to Hydrostatic Pressure (수압을 받는 원통형 실린더의 초기부정을 고려한 좌굴해석)

  • Nho, In Sik;Ryu, Jae Won;Lim, Seung Jae;Cho, Sang Rai;Cho, Yun Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.3
    • /
    • pp.267-273
    • /
    • 2017
  • Pressure hulls of submerged structures are generally designed as circular cylinders, spheres or cones with form of axisymmetric shell of revolution to withstand the high external pressure of deep ocean. The compressive buckling (implosion) due to hydrostatic pressure is the main concern of structural design of pressure hull and many design codes are provided for it. It is well-known that the buckling behavior of thin shell of revolution is very sensitive to the initial geometric imperfections introduced during the construction process of cutting and welding. Hence, the theoretical solutions for thin shells with perfect geometry often provide much higher buckling pressures than the measured data in tests or real structures and more precise structural analysis techniques are prerequisite for the safe design of pressure hulls. So this paper dealt with various buckling pressure estimation techniques for unstiffened circular cylinder under hydrostatic pressure conditions. The empirical design equations, eigenvalue analysis technique for critical pressure and collapse behaviors of thin cylindrical shells by the incremental nonlinear FE analysis were applied. Finally all the obtained results were compared with those of the pressure chamber test for the aluminium models. The pros and cons of each techniques were discussed and the most rational approach for the implosion of circular cylinder was recommended.

Earthquake-Induced Wall Pressure Response Analysis of a Square Steel Liquid Storage Tank (지진하중을 받는 정사각형 강재 액체저장탱크의 벽면 압력 응답 해석)

  • Yun, Jang Hyeok;Kang, Tae Won;Yang, Hyunik;Jeon, Jong-Su
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.5
    • /
    • pp.261-269
    • /
    • 2018
  • This study examines earthquake-induced sloshing effects on liquid storage tanks using computation fluid dynamics. To achieve this goal, this study selects an existing square steel tank tested by Seismic Simulation Test Center at Pusan National University as a case study. The model validation was firstly performed through the comparison of shaking table test data and simulated results for the water tank subjected to a harmonic excitation. For a realistic estimation of the wall pressure response of the water tank, three recorded earthquakes with similar peak ground acceleration are applied:1940 El Centro earthquake, 2016 Gyeongju earthquake, and 2017 Pohang earthquake. Wall pressures monitored during the dynamic analyses are examined and compared for different earthquake motions and monitoring points, using power spectrum density. Finally, the maximum dynamic pressure for three earthquakes is compared with the design pressure calculated from a seismic design code. Results indicated that the maximum pressure from the El Centro earthquake exceeds the design pressure although its peak ground acceleration is less than 0.4 g, which is the design acceleration. On the other hand, the maximum pressure due to two Korean earthquakes does not reach the design pressure. Thus, engineers should not consider only the peak ground acceleration when determining the design pressure of water tanks.