• Title/Summary/Keyword: Pressure biofeedback

Search Result 87, Processing Time 0.028 seconds

Effects of Inspiratory Muscle Exercise Using Biofeedback on Inspiratory Muscle Activity and Pulmonary Function in Patients with Stroke

  • Yang, Dae-Jung;Park, Seung-Kyu;Kang, Jeong-Il;Kim, Je-Ho;Kim, Sung-Yong
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.5
    • /
    • pp.287-291
    • /
    • 2015
  • Purpose: This study was conducted to determine the influence of inspiratory muscle exercise using visual biofeedback and inspiratory muscle exercise with diaphragm breathing retraining in stroke patients in regard to inspiratory muscle activity and respiratory function and to provide fundamental information on intervention for improvement of pulmonary function in stroke patients. Methods: The current study measured and analyzed inspiratory muscle activity and pulmonary function of 15 randomly selected subjects in a Biofeedback inspiratory muscle exercise (BIE) group that uses visual feedback and 15 subjects in the Diaphragm breathing exercise (DBE) group that uses breathing retraining before and after intervention. Intervention was performed for 30 minutes, 5 times a week, for 8 weeks. Subjects were measured for muscle activity of upper trapezius muscle and lattisimus dorsi muscle using a surface electromyography system and maximum inspiratory pressure was measured using a respiratory measurement device. For homogeneity test of subjects, independent t-test was performed and ANCOVA was performed for comparison of inspiratory muscle activity and pulmonary function between groups. Results: In the study results, the BIE group showed more significant muscle activity than the DBE group in upper trapezius muscle and lattisimus dorsi muscle (p<0.001). In addition, the BIE group showed more pressure than the DBE group in maximum inspiratory pressure (p<0.001). Conclusion: Based on the current study, performing biofeedback respiration exercise simultaneously with breathing retraining in stroke patients can provide more efficient respiratory physical therapy. In addition, it is considered that consistent study on the effectiveness is necessary to further improve clinical availability.

Effect of Visual Biofeedback Training in Real Time on Buttock Pressure and Pelvic Tilting Angles of Hemiplegic Patients During Sitting

  • Cho, Min-su;Park, Kyue-nam;Choung, Sung-dae;Kwon, Oh-yun
    • Physical Therapy Korea
    • /
    • v.24 no.2
    • /
    • pp.66-75
    • /
    • 2017
  • Background: After a stroke, the control of the trunk muscle may be severely impaired. Due to the importance of trunk control in complex daily postures, the ability to adopt a correct sitting posture is considered a determinant of the recovery of independent function after a stroke. Objects: The purposes of this study were to compare differences in buttock pressure between the left and right sides of hemiplegic patients and differences in their pelvic tilting angles (sagittal and coronal planes) after sitting training with visual biofeedback (VBF) in real time. Methods: Twenty-two individuals with unilateral strokes (11 left-side and 11 right-side hemiplegic stroke patients) participated in this study. Buttock pressure was measured using a pressure mat, and pelvic angles were measured using a palpation meter. Results: The asymmetry of pressure between the right and left (first and third chamber) sides was significantly decreased after the VBF training. The measurements obtained using the palpation meter revealed a significant decrease in the pelvic angles pre- versus post-intervention. Conclusion: VBF training may be distribute a patient's buttock pressure equally while in a sitting posture and increase the length of time a stroke patient can maintain a symmetrical sitting posture. It can also improve pelvic control while sitting in a neutral position.

Usability Testing of Digital Pressure Bio-feedback for Spinal Rehabilitation Exercise (척추재활운동을 위한 디지털 압력바이오피드백 장치의 사용성 평가)

  • Kim, Tea-Ho;Oh, Do-Bong;Kim, Da-Yeon
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.11 no.3
    • /
    • pp.119-126
    • /
    • 2017
  • In the clinical setting, the pressure bio-feedback device is used for the spinal rehabilitation of patients with back pain, but it has several disadvantages. The purpose of this study was to develop a digitalized pressure biofeedback system that provides precise exercise method and posture in real time during the spinal rehabilitation exercise by sensing and monitoring body movements and balance of users and providing biofeedback to users. After that, the usability testing for a digitalized pressure biofeedback system will be conducted to identify problems such as safety, performance, operability, and satisfaction, and suggest improvement directions. A total of 33 subjects were participated in the usability testing. The experts group and the users group evaluated the developed digitalized pressure biofeedback system on a scale of 5 points after using the equipment. In the user group, safety was 3.59, operability was 4.38, satisfaction was 4.49. In the expert group, safety was 2.86, operability was 3.91, and performance was 4.28. Based on the usability evaluation, if the problems of stability of the cradle for tablet PC, air injection, screen display, etc. are solved, it becomes a exercise device capable of accurately exercising and evaluating the function of the spine by checking its own motion state while the spinal stabilization exercise.

The Effect of Erector Spine and Gluteus maximus Muscle Activity on Bridging Exercise with Stabilizer Pressure Biofeedback (생체자기제어 측정 기구를 이용한 교각운동이 척추세움근과 큰볼기근의 근활성도에 미치는 영향)

  • Go, Seong-Uk;In, Tae-Sung
    • Journal of Korean Physical Therapy Science
    • /
    • v.24 no.2
    • /
    • pp.9-16
    • /
    • 2017
  • Purpose: This study was conducted in order to examine the changes of muscle activitis of erector spine muscles and Gluteus maximus during the bridge exercise with adductor muscles. Method: After attaching the EMG device to the Gluteus maximus and erector spine muscles of the 100 healthy adult males in their 20s, applying the stabilizer pressure biofeedback device between the knees, the bridge movement was carried out 10 seconds. Result: During the exercise of the bridge movement, the muscular activities in erector spine and gluteus maximus were significantly different in ralation to the simultaneous contractive adductor muscles of the bridge(p<.05). Conclusion: Thus, the bridge exercise is carried out in conjunction with the simultaneous contraction of adductor muscles that suggests that the training are more effective in erector spine and gluteus maximus activities.

불안정판을 이용한 자세균형 훈련시스템에 관한 연구

  • Kim, Gyeong;Park, Yong-Gun;Kim, Seong-Hyeon;Yu, Mi;Gwon, Dae-Gyu;Hong, Cheol-Un;Kim, Nam-Gyun
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.294-294
    • /
    • 2004
  • 최근 평균수명의 연장에 따른 사회 노년층의 증가로 낙상사고의 빈도가 높아지고 있으며, 또한 교통사고 발생이 빈번함에 따라 전정계 이상 및 체성감각계의 기능 손상에 의한 자세균형 환자가 점점 증가하고 있는 추세이며, 이러한 균형 제어력의 소실이 환자의 재활치료에 많은 어려움을 초래하고 있다. 자세균형제어에 관한 연구는 주로 힘판을 이용하여 특정 감각시스템으로부터의 입력을 제한하거나 외력에 의해 평형 유지를 방해했을 때, 신체 전이(displacement), 압력중심의 움직임(Center Of Pressure; COP), 자세 유지 시 작용하는 근육의 활동전위 등을 측정하는 연구와 더불어 균형에 어려움을 느끼는 환자를 위한 바이오피드백(Biofeedback)을 적용한 연구가 보고되고 있다.(중략)

  • PDF

Reliability of the Active Knee Extension Test With a Pressure Biofeedback Unit

  • Kim, Chang-ho;Gwak, Gyeong-tae;Kwon, Oh-yun
    • Physical Therapy Korea
    • /
    • v.24 no.3
    • /
    • pp.40-46
    • /
    • 2017
  • Background: The active knee extension (AKE) test commonly used to assess the flexibility of the hamstring muscles. Many researchers have tested the reliability of the AKE test; however, no published studies have examined the intrarater and interrater reliability of the AKE test using a PBU. Objects: The purpose of this study was to determine the intrarater and interrater reliability of the AKE test performed with a pressure biofeedback unit (PBU) on healthy subjects. Methods: Sixteen healthy male participants volunteered and gave informed consent to participate in this study. Two raters conducted AKE tests independently with a PBU. Each knee was measured twice, and the AKE testing was repeated one week after the first round of testing. Results: The interrater reliability's intraclass correlation coefficients ($ICC_{2,1}$) were .887~.986 for the right knees and .915~.988 for the left knees. In addition, the intrarater (test-retest) reliability ($ICC_{3,1}$) values ranged between .820~.915 and .820~.884 for Raters 1 and 2, respectively. The values for the standard error of mesurement were low for all tests ($.81{\sim}2.97^{\circ}$); the calculated minimum detectable change was $2.24{\sim}8.21^{\circ}$. Conclusion: These findings suggest that the AKE test performed with a PBU had excellent interrater and intrarater reliability for assessing hamstring flexibility in healthy young males.

Can Abdominal Drawing-In Maneuver Using a Pressure Biofeedback Unit Change Muscle Recruitment Pattern During Prone Hip Extension?

  • Oh, Jae-Seop;Weon, Jong-Hyuck;Cynn, Heon-Seock;Kwon, Oh-Yun
    • Physical Therapy Korea
    • /
    • v.13 no.4
    • /
    • pp.56-63
    • /
    • 2006
  • This study examined the effects of the abdominal drawing-in (ADI) maneuver using a pressure biofeedback on muscle recruitment pattern of erector spinae and hip extensors and anterior pelvic tilt during hip extension in the prone position. Fourteen able-bodied volunteers, who had no medical history of lower extremity or lumbar spine disease, were recruited for this study. The muscle onset time of erector spinae, gluteus maximus, and medial hamstring and angle of anterior pelvic tilt during hip extension in prone position were measured in two conditions: ADI maneuver condition and non-ADI maneuver condition. Muscle onset time was measured using a surface electromyography (EMG). Kinematic data for angle of anterior pelvic tilt were measured using a motion analysis system. The muscle onset time and angle of anterior pelvic tilt were compared using a paired t-test. The study showed that in ADI maneuver during hip extension in prone position, the muscle onset time for the erector spinae was delayed significantly by a mean of 43.20 ms (SD 43.12), and the onset time for the gluteus maximus preceded significantly by a mean of -4.83 ms (SD 14.10) compared to non-ADI maneuver condition (p<.05). The angle of anterior pelvic tilt was significantly lower in the ADI maneuver condition by a mean of 7.03 degrees (SD 2.59) compared to non-ADI maneuver condition (15.01 degrees) (p<.05). The findings of this study indicated that prone hip extension with the ADI maneuver was an effective method to recruit the gluteus maximus earlier than erector spinae and to decrease anterior pelvic tilting.

  • PDF

A Preliminary Study of the Effect of Kegel Exercise Using a Pressure Biofeedback Unit on Maximum Voluntary Ventilation and Abdominal Muscle Thickness (압력 생체되먹임 기구를 이용한 케겔 운동이 최대 수의적 환기량과 배 근육 두께에 미치는 사전 연구)

  • Lee, Kyung-Soon;Park, Kang-Hui;Park, Han-Kyu
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.10 no.1
    • /
    • pp.81-89
    • /
    • 2022
  • Purpose : Kegel exercises reported that it is effective in managing stress-related or complex urinary incontinence through contraction and relaxation of the pelvic floor muscles. In many previous studies, it was confirmed that Kegel exercise is involved in respiration as well as urinary system diseases. However, there is a lack of research on the effect of pelvic setting when performing Kegel exercises. Therefore, this study was conducted to investigate the effect on maximum voluntary ventilation (MVV) and abdominal muscle thickness through Kegel exercise after lumbar-pelvic motor control using pressure biofeedback unit (PBU). Methods : The subjects of this study were 10 healthy female students in their 20s. Subjects measured MVV with a spirometer. In hooklying, external oblique, internal oblique, and transverse abdominis of the dominant hand were measured using ultrasound. The measured value was an average of three times. After one week of intervention, measurements were made in the same manner. Before Kegel exercise, pelvic setting training was performed using PBU. In hooklying, PBU was placed in the waist and set to 40 mmHg, and it was adjusted to 60 mmHg through pelvic muscle contraction. For Kegel exercise, the pelvis was first set using PBU, and then the pelvic floor muscles were contracted for 8 seconds and relaxed for 8 seconds, 10 times, 1 set, and 3 sets. Results : In MVV, a significant difference was confirmed after exercise than before exercise (p<.05). There was also a significant difference in abdominal muscle thickness before and after exercise (p<.05). Conclusion : Based on the results of this study, Kegel exercise using PBU had an effect on MVV and abdominal muscle thickness. However, since this study was conducted without a control group as a preliminary study, additional research should be conducted to supplement this.

Estimation of Tension Status for Alcohol Dependent Patients using Biofeedback Training and Fuzzy Theory (피지이론과 바이오피드백을 이용한 주정중독증 환자의 긴장도 평가)

  • 성홍모;시재우;윤영로;윤형로;박진한;신정호
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.191-198
    • /
    • 1999
  • Biofeedback training is one of physiological self control methods for patients who has psychological problem and rehabilitational problem. It has been used to control blood pressure, heart rate, peripheral temperature, respiration, electromyography (ENG), and other biological signals-ENG, respiration, heat rate, peripheral temperature, skin conductance level-was developed in house. We applied this system to alcohol dependent patients to perform biofeedback training. In this experiment, the relaxation biofeedback training for alcohol dependent patient was carried out and the tension state for the change of biological signals were estimated using the fuzzy theory after relaxation biofeenback training. Eight alcohol dependent patients were agreed to participate in this experiment. Result showed that 1) the tension degree of patients were higher than the tension degree of normal subject. 2) The tension degree of patients were decreased as the training numbers were increased.

  • PDF

Comparison of Cervical Flexor Muscles Thickness During Cranial-Cervical Flexor Exercise According to Pressure Levels and Eye Directions in Healthy Subjects

  • Chang, Jong Sung;Lee, Jeon Hyeong
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.1
    • /
    • pp.50-54
    • /
    • 2015
  • Purpose: The purpose of this study is to investigate differences of cervical flexor muscle thickness (i.e., sternocleidomastoid muscle and deep cervical flexor muscles) depending on levels of pressure bio-feedback unit and eye directions during cranial-cervical flexor exercise in healthy subjects. Methods: A total of 30 subjects (12 males and 18 females) who had no medical history related to musculoskeletal and neurological disorders were enrolled in this study. They were instructed to perform cranial-cervical flexion exercise with adjustment of five different pressures (i.e., 22 mmHg, 24 mmHg, 26 mmHg, 28 mmHg, and 30 mmHg) using a pressure biofeedback unit, according to three different eye directions (i.e., $0^{\circ}$, $20^{\circ}C$, and $40^{\circ}C$). Muscle thickness of sternocleidomastoid muscle and deep cervical flexor muscles was measured according to pressure levels and eye directions using ultrasonography. Results: In results of muscle thickness in sternocleidomastoid muscle and deep cervical flexor muscles, the thickness of those muscles was gradually increased compared to the baseline pressure level (22 mmHg), as levels in the pressure biofeedback unit during cranial-cervical flexion exercise were increasing. In addition, at the same pressure levels, muscle thickness was increased depending on ascending eye direction. Conclusion: Our findings showed that muscle thickness of sternocleidomastoid muscle and deep cervical flexor muscles was generally increased during cranial-cervical flexion exercise, according to increase of eye directions and pressure levels. Therefore, we suggested that lower eye direction could induce more effective muscle activity than the upper eye direction in the same environment during cranial-cervical flexion exercise.