• Title/Summary/Keyword: Pressure Welding

Search Result 559, Processing Time 0.024 seconds

A Study on the Characteristics of Gas Pressure Welding for Rails (가스압접 레일의 특성에 관한 연구)

  • Na Sung-Hoon;Kwon Sung-Tae;Kim Weon-Kyung
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.775-780
    • /
    • 2004
  • CWR technology is generally believed to contribute to the increase of train speed and bring a variety of significant advantages, such as the decrease in track works, noise and vibration as well as the improvement of passenger comfort. In CWR technology, welding is considered to be one of the most important element technologies. Among the various welding methods, gas pressure welding is the most frequently used in vicinity of train line station since the operation is simple and the instruments are not heavy. The gas pressure welding is constructed exactly by good manual book on which simple and excellent welding methods is written and has the same performance as raw material. But this can be poor in the variety of the processing of rail end surface to be welded, the control of oxyacetylene flame and axil compressive force. This study tries to describe the characteristics of gas pressure welding, defect-causing factors and preventive counterplan of defects

  • PDF

A Study on the Reheat Crack around Welded Joint of Pressure Vessel with $2\frac{1}{4}Cr-1Mo$ Steel ($2\frac{1}{4}Cr-1Mo$강 압력용기 Nozzle 용접이음부의 재열균열에 관한 연구)

  • 방한서;김종명
    • Journal of Welding and Joining
    • /
    • v.18 no.2
    • /
    • pp.100-104
    • /
    • 2000
  • Pressure vessels usually consist of main body and pipes which are connected with the main body. And as joining method of such main body and pipes, welding is carried out. After welding, welding residual stresses inevitably occur around welded joints. As residual stresses act harmfully on fatigue strength, corrosion and buckling strength of structure, PWHT is carried out for the purpose of removing the residual stress. But, during PWHT process, $2\frac{1}{4}Cr-1Mo$ steels are frequently apt to generate reheat crack. For this reason, it is strongly needed to analyze and examine the mechanical behavior of welded joints before and after PWHT process. So, in this study, welded nozzle parts of pressure vessel where reheat cracks frequently occur are selected for examining the mechanism of crack-occurrence.

  • PDF

A Study on Friction and Wear Characteristics of Welded Rails Under Various Sliding Environments (레일 용접부의 미끄럼 환경변화에 따른 마찰 및 마멸특성 연구)

  • 김청균
    • Tribology and Lubricants
    • /
    • v.15 no.2
    • /
    • pp.178-183
    • /
    • 1999
  • This paper presents friction and wear related results of thermite and gas pressure welded rails under various environmental contact conditions. A welded rail which was fabricated by thermite welding and gas pressure one has been tested over full range of test conditions in a pin-on-disk wear testing machine. The results show that the friction coefficient and wear rates of a welded rail are heavily dependent on the contact pressures and sliding environments for two welding methods such as thermite and gas pressure weldings.

The bonding mechanism and bond strength of cold pressure welding (엡셋팅에 의한 냉간 압접의 결합 기구와 결합강도)

  • 한인철;김재도
    • Journal of Welding and Joining
    • /
    • v.8 no.3
    • /
    • pp.31-38
    • /
    • 1990
  • The bonding mechanism and bond strength were investigated for the cold pressure welding of Al to Al, Cu to Cu and Al to Cu by upsetting. A phenomenon of bonding betweenthe metallic components has been observed by a scanning electron microscope and metallurgical microscope. A modified equation for bond strength with respect to the reduction of height shows reasonably a good agreement with the experimental data. When the values of the hardening factor and threshold deformation for the given materials could be determined, the theoretical bond strength can be calculated.

  • PDF

Study on the cold pressure welding by upsetting (업셋팅 을 이용한 냉간압접 에 대한 연구)

  • 안기원;김재도
    • Journal of Welding and Joining
    • /
    • v.3 no.2
    • /
    • pp.27-34
    • /
    • 1985
  • The mechanical properties and bonding mechanism of aluminum, copper and mild steel have been determined in cold pressure welding. The brittle cover layer to be established by scratch-brushing plays an important role in bond strength and has an influence on the threshold of deformation. The cold pressure welding was achieved at 54% of height reduction in A1-A1, 75% in Cu-Cu, 56% in Al-Cu, and 74% in Cu-steel. The height reduction at which the bond strength of weld interface was the same as the tensile strength of base metal should be over 76% in Al-Al, 82% in Cu-Cu, and 78% in Al-Cu.

  • PDF

Optimization for Friction Welding of AZ31 Mg Alloy by Design of Experiments (실험계획법에 의한 AZ31마그네슘합금의 마찰접합시 최적공정설계)

  • Kang, Dae-Min;Kwak, Jae-Seob;Choi, Jong-Whan;Park, Kyeong-Do
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.64-69
    • /
    • 2011
  • Magnesium alloy has been known as lightweight material in automobile and electronic industry with aluminum alloy, titanium alloy and plastic material. Friction welding is useful to join different kinds of metals and nonferrous metals they are difficult to be joined by such as gas welding, resistance welding and electronic beam welding. In this study, friction welding was performed to investigate optimization process of Mg alloy with a 20mm diameter solid bar. For that, the orthogonal array $(L_{9}(3^{4}))$ was used that contained four factors and each factor had three levels. Control factors were heating pressure, heating time, upsetting pressure and upsetting time. Also tensile tests were carried out to measure mechanical properties for welded conditions. The levels of heating pressure and upsetting pressure used were 15, 25, 35MPa, and 30, 50, 70MPa, respectively. In addition those of heating time and upsetting time were 0.5, 1, 1.5 sec and 3, 4, 5 sec., respectively, rotating speed of 2000rpm. From the experimental results, optimization condition was estimated as follows; heating pressure=35MPa, upsetting pressure=70MPa, heating time=1.5sec, upsetting time=3sec.

Development of Porthole Extrusion Die for Improving Welding Pressure in Welding Chamber by Using Numerical Analysis (수치해석을 이용한 접합실 내 접합압력 향상을 위한 포트홀 압출금형 개발)

  • Lee, S.Y.;Lee, I.K.;Jeong, M.S.;Ko, D.C.;Kim, B.M.;Lee, S.K.
    • Transactions of Materials Processing
    • /
    • v.26 no.2
    • /
    • pp.115-120
    • /
    • 2017
  • Porthole extrusion process is a very effective metal forming process to produce aluminum profiles with hollow sections. The structure of porthole extrusion die is very complex. In this process, the billet is divided by porthole bridge, and then the divided billet is welded in the welding chamber. The welding pressure in the welding chamber is very important. The higher welding pressure improves the quality of the aluminum profiles. Therefore, the objective of this study is to develop a new porthole extrusion die for improving the welding pressure in the welding chamber by using numerical analysis. The effectiveness of the new porthole extrusion die was verified by using numerical analysis. Through numerical analysis, the welding pressures in the welding chamber between the new porthole die and the conventional porthole die were compared with each other.

Analysis of Heat Flow and Deformation in Laser Welding of Small Gas Pressure vessel (소형 가스용기 레이저 용접부의 열유동 및 변형해석에 관한 연구)

  • 박상국;김재웅;김기철
    • Journal of Welding and Joining
    • /
    • v.19 no.1
    • /
    • pp.104-111
    • /
    • 2001
  • This study presents an analysis method for heat flow and deformation of sheet metal laser welding. A heat source model for 2-dimensional heat flow analysis of laser welding process was suggested in this paper. To investigate the availability of the heat source model, the analysis results were compared and estimated with the results of previous researches. We could get a good agreement between the results of numerical analysis and experiments in the temperature distribution of weldment. Due to the characteristics of welding process, some kinds of deformations are usually generated in a welded structure. Generally, the degree of deformation is dependent on the welding sequence constraints as well as input power Therefore, in this paper we evaluate the deformation of gas pressure vessel according to the welding sequence and input power. In the analysis of weld deformation, 2-dimensional thermo-elasto-plastic analysis was performed for the gas pressure vessel by using a commercial FE program package.

  • PDF

The Study of Quality Evaluation on Dissimilar Material Friction Welding of Poly-urethane Foaming Machine Components (폴리우레탄 발포기 부품 이종재 마찰용접의 품질 평가에 관한 연구)

  • Yang, Yong-Mo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.75-81
    • /
    • 2012
  • Dissimilar material friction welding such as STD11 and SCM440, we are considering of such things as strength and tenacity of welding interface, which consist of friction welding rotation frequency, friction heating pressure, upset forging-pressure, friction heating time, and upset forging-pressure time. From the study, obtaining the interrelationship between welding condition and quality(toughness, tenacity), we can set the best range of welding condition. while performing acoustic emission examination for the nondestructive evaluation, we can deduce the interrelationship among total acoustic emission counts, friction welding variable, and quality during friction welding, which can solve the manufacturing difficulty and enhance the economic value.

Development of Laser Welding Technology for Commercial Vehicle Oil Pressure Sensor (상용차 오일압력 측정용 압력센서 제작을 위한 레이저용접기술)

  • Lee, Young-Min;Kim, Soon-Dong;Cho, Hae-Woon
    • Journal of Welding and Joining
    • /
    • v.30 no.4
    • /
    • pp.38-43
    • /
    • 2012
  • Using a fiber laser heat source, an oil pressure sensor was fabricated to measure the pressure in commercial vehicles. A stepping motor was used for the rotational and translational motion in the diaphragms and hardware joining. Laser welding process algorism including shielding gas control and vision system was integrated by using LabVIEW software for the high quality welding and in-line monitoring purpose. For the maximum flexibility in pressure transmission to the pressure sensor, thin sheet metal diaphragm, $25{\sim}50{\mu}m$(SUS-316L), was used and the diaphragms were optimally designed with FEM analysis. The welded samples were cross-sectioned the observation showed that the maximum depth ratio was more than seven times of diaphragms. The maximum welding speed was measured to be as high as 50in/mm by the developed automation mechanism. The fabricated prototypes were tested for the proof pressure, spring constant and sealing. The FEM results of spring constant measurement was as accurate as up to 80% of the design value and the sensor was safely operated up to the nominal pressure of 10bars.