• Title/Summary/Keyword: Pressure Strain

Search Result 1,462, Processing Time 0.022 seconds

Study on the Consolidation Characteristics of Marine Clay by CRS and Conventional Tests (일정변헝률 및 표준압밀시험을 이용한 해성점토의 압밀특성 연구)

  • Lee, U-Jin;Im, Hyeong-Deok;Lee, Won-Je
    • Geotechnical Engineering
    • /
    • v.14 no.4
    • /
    • pp.47-60
    • /
    • 1998
  • A series of conventional tests and CRS consolidation tests with different rates of strain were performed to investigate the consolidation characteristics of marine clay. Preconsolidation pressures were evaluated by applying previously proposed methods for both the conventional tests and CRS tests results in order to check the legitimacy of those methods. The effects of strain rate on effective consolidation stress strain relationship, porewater pressure, and preconsolidation pressure were also discussed It was found that the effective stress strain relationship and the preconsolidation pressure are a function of strain rate imposed during consolidation test, but compression index isn't. The preconsolidation pressure ratio ($a_2=\sigma'_{pCRS}/\sigma'_{pConv}$)of marine clay appears proportional to the logarithm of strain rate, with average values ranging from 1.11 to 1.30 for strain rates between $1\timesx10^{-4} %/sec\; and\; 4\times10 %/sec$. The porewater pressure ratio during CRS teats does not exceed 6.0% except when the strain rate is $6.67\times10^{-4} %/sec$. Coefficient of consolidation or coefficient of permeability at normally consolidated range was not affected by the type of consolidation tests and the strain rate. Typical values of compression index (C.), coefficient of consolidation(c.), and coefficient of permeability (k.) at normally consolidated range were 0.56-0.95, $0.56\times10^{-4}~3.0\times10^{-4}cm2/sec,\; and\; 2.0\times10^{-8}~7.0\time10^{-4}cm/sec,$ respectively.

  • PDF

Failure simulation of nuclear pressure vessel under severe accident conditions: Part II - Failure modeling and comparison with OLHF experiment

  • Eui-Kyun Park;Jun-Won Park;Yun-Jae Kim;Yukio Takahashi;Kukhee Lim;Eung Soo Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4134-4145
    • /
    • 2023
  • This paper proposes strain-based failure model of A533B1 pressure vessel steel to simulate failure, followed by application to OECD lower head failure (OLHF) test simulation for experimental validation. The proposed strain-based failure model uses simple constant and linear functions based on physical failure modes with the critical strain value determined either using the lower bound of true fracture strain or using the average value of total elongation depending on the temperature. Application to OECD Lower Head Failure (OLHF) tests shows that progressive deformation, failure time and failure location can be well predicted.

Development of a High Temperature and Exactitude Pressure Sensors for Superior Environmental Characteristics (내환경성이 우수한 고온.고정밀용 압력센서의 개발)

  • 서정환;백명숙;임창섭
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.13-22
    • /
    • 2002
  • This paper presents characteristics of CrOx thin-film Strain gauge pressure sensors, which were deposited on SUS630 diaphragm by DC reactive magnetron sputtering in an argon-Oxide atmosphere(Ar-(10%)$O_2$). The optimized condition of CrOx thin-film strain gauges were thicknessrange of 2500$\AA$ and annealing condition ($350^{\circ}C$, 3 hr) in Ar-10 %$O_2$deposition atmosphere. Under optimum conditions, the CrOx thin-films for strain gauge is obtained a high resistivity, $\rho$=156.7$\mu$$\Omega$cm, a low temperature coefficiect of resistance, TCR=-86 ppm/$^{\circ}C$ and a high temporal stability with a good longitudinal, 15. The output sensitivity of pressure sensor obtained is 2.46㎷/V and the maximum non-linearity is 0.3%FS and hysteresis is less than 0.2%FS. The output characteristics of pressure transmitter obtained is 4~20㎃ and total accuracy is less than $\pm$0.5%FS. In those conclusions, CrOx thin film pressure sensors is quite satisfactory for many applications in industrial electronics.

  • PDF

Field measurement of local ice pressures on the ARAON in the Beaufort Sea

  • Lee, Tak-Kee;Lee, Jong-Hyun;Kim, Heungsub;Rim, Chae Whan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.788-799
    • /
    • 2014
  • This study conducted four field measurements of local ice pressure during the icebreaking voyage of the icebreaking research vessel "ARAON" in the Chukchi and Beaufort seas from July to August of 2010. For measurements, 14 strain gauges, including 8 strain gauge rosettes, were set on the bow of the port side. Influence coefficients were determined using a finite element model of the instrumented area and they were used to convert the measured strains on the hull structure to local ice pressures. The converted maximum pressure was calculated as 2.12 MPa on an area of $0.28m^2$. Pressure-area curves were developed from the surveyed pressure data and the results were compared with previously measured data. The study results are expected to provide an understanding of local ice pressures and thus be useful in the structural design of ice class ships.

Structural Analysis of High Pressure Injection Nozzle (고압 분사노즐의 구조해석)

  • 원종진;이종선;윤희중;김형철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.69-74
    • /
    • 2002
  • This study is object to structural analysis of high pressure injection nozzle. The finite element model was developed to compute the stress, strain for high pressure injection nozzle. For structural analysis using result from FEM code. This structural analysis results, many variables such as internal pressure, boundary condition, constraint condition and load condition are considered.

  • PDF

Residual Strain Effect on Circumferential Strain on Arterial Cross-Section (동맥 전단부에 분포된 원주 변형율에 대한 잔유 변형율의 영향)

  • 황민철;신정욱
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.3
    • /
    • pp.325-330
    • /
    • 1995
  • The distribution of circumferential strain of arterial cross-section Is highest at intima and lowest at adventitia. However, the circumferential strain is theoretically severe at Intima because there is strain concentration. The theoretical degree of the intimal strain can not be explained in physiological condition even though artery is physiologically normal. Physiological adaptation may be undertaken to strain concentration. However, it is not clear, yet. Residual strain of artery is eagerly studied. There is experimental evidence that residual strain exists in artery. When ring of artery is longitudinally cut, it is opened. Assumption is made that intimal strain concentration is reduced with the considel'ation of residual strain. This study experimentally attempts to quantify the effect of residual strain on circumferential strain which is determined under the assumption of zero strain with zero pressure.

  • PDF

An Experimental Study on the Diaphragm Deflection Characteristic of a Hydrogen Diaphragm Compressor (다이아프램식 수소압축기에서 다이아프램 변형특성에 관한 실험적 연구)

  • Shin, Young-Il;Park, Hyun-Woo;Lee, Young-Jun;Kim, Gyu-Bo;Song, Ju-Hun;Chang, Young-June;Jeon, Chung-Hwan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.4
    • /
    • pp.274-282
    • /
    • 2009
  • Diaphragm compressor is widely used for hydrogen compression because it achieves high gas pressure without gas contamination. Diaphragm deflecting in the cavity with high pressure formed by an oil compression is the most important component in the compressor. Therefore, it is necessary to obtain deflection degree of diaphragm to predict the damage point of diaphragm. The objective of this study is to estimate the diaphragm's damage point through diaphragm deflection test by implementing with strain gauges attached on several radial points. Without gas compression, strain sum of each points varied as similarly as the variation of the pressure with respect to time. And while the motor speed was slower than 400rpm, the strain near the rim was larger than that of the center. When motor speed, however, was over 500rpm, strain became similar to that of the center and the rim. With gas compression, it was shown that the variation of the strain sum was delayed against that of the pressure and the strain near the rim was much higher than that of the center.

Lateral strain-axial strain model for concrete columns confined by lateral reinforcement under axial compression

  • Hou, Chongchi;Zheng, Wenzhong
    • Structural Engineering and Mechanics
    • /
    • v.84 no.2
    • /
    • pp.239-251
    • /
    • 2022
  • The use of lateral reinforcement in confined concrete columns can improve bearing capacity and deformability. The lateral responses of lateral reinforcement significantly influence the effective confining pressure on core concrete. However, lateral strain-axial strain model of concrete columns confined by lateral reinforcement has not received enough attention. In this paper, based on experimental results of 85 concrete columns confined by lateral reinforcement under axial compression, the effect of unconfined concrete compressive strength, volumetric ratio, lateral reinforcement yield strength, and confinement type on lateral strain-axial strain curves was investigated. Through parameter analysis, it indicated that with the same level of axial strain, the lateral strain slightly increased with the increase in the unconfined concrete compressive strength, but decreased with the increase in volumetric ratio significantly. The lateral reinforcement yield strength had slight influence on lateral strain-axial strain curves. At the same level of lateral strain, the axial strain of specimen with spiral was larger than that of specimen with stirrup. Furthermore, a lateral strain-axial strain model for concrete columns confined by lateral reinforcement under axial compression was proposed by introducing the effects of unconfined concrete compressive strength, volumetric ratio, confinement type and effective confining pressure, which showed good agreement with the experimental results.

The Strain of Flexible Ring Type Valve used for Refrigeration Compressor (냉동압축기용(冷凍壓縮機用) 환상형토출(環狀型吐出)밸브의 변형(變形))

  • Jeong, J.W.;Jo, K.O.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.2
    • /
    • pp.150-158
    • /
    • 1988
  • On a refrigeration compressor, damage of a discharge valve is one of the annoying troubles for an engineer. Small size compressors, having ring plate type discharge valve are recently used. Therefore, it is very important for engineers to measure and analyze strains of discharge valve. The purpose of this study is to obtain the basic data of the strain of the flexible ring valve. Measurements were performed by the strain gauge bonded on the surface of the flexible ring valve. Stress and strain of the valve were calculated by the method of uniformly loaded circular plates with a central hole. The results obtained are as follows; (1) the strain of flexible ring discharge valve in refrigeration compressor was influenced by tension and compression strain simultaneously. (2) for a given discharge pressure, the tangential and radial strains was increased with increasing discharge pressure. (3) the valve of radial strain was larger than that of tangential strain.

  • PDF

Effect of pulse shaper in SHPB technique on dynamic deformation behavior of an NBR rubber (SHPB 기법에서 Pusle shpaer 가 내유 고무(NBR)의 동적 변형 거동에 미치는 영향)

  • 김성현;이억섭;이종원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.634-637
    • /
    • 2004
  • This paper presents a Split Hopkinson Pressure Bar(SHPB) technique to obtain compressive stress-strain data for rubber materials. An experimental technique that modifies the conventional Split Hopkinson Pressure Bar(SHPB) has been developed for measuring the compressive stress-strain responses of materials with low mechanical impedance and low compressive strengths such as rubber. This paper introduces an all-polymeric pressure bar which achieves a closer impedance match between the pressure bar and the specimen materials. In addition, we are a pulse shaper to lengthen the rising time of the incident wave to ensure stress equilibrium and homogeneous deformation of a rubber materials. It is found that the modified technique can be determine the dynamic deformation behavior of an NBR rubber more accurately.

  • PDF