• Title/Summary/Keyword: Pressure Strain

Search Result 1,462, Processing Time 0.029 seconds

Dynamic tensile behavior of PMMA (PMMA의 동적 인장 거동)

  • Lee, Ouk-Sub;Kim, Myun-Soo;Hwang, Si-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.395-400
    • /
    • 2001
  • The Split Hopkinson Pressure Bar(SHPB) technique, a special experimental apparatus, has been used to obtain the material behavior under high strain rate loading condition. In this paper, dynamic deformation behaviors of the PMMA under high strain rate tensile loading are determined using SHPB technique.

  • PDF

Thick-Film Strain-gage Ceramic-Pressure Sensor (세라믹 다이어프램을 이용한 후막 스트레인 게이지 압력센서)

  • 이성재;박하용;민남기
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.12
    • /
    • pp.987-993
    • /
    • 2001
  • In this paper, we presents the construction details and output characteristics of a thick film piezoresistive strain gage. The thick film was printed on the ceramic diaphragm back side by screen printing and cured at 850$^{\circ}C$. The strain distribution and deflection on ceramic diaphragm were performed with finite-element method(FEM tool ANSYS-5.3). Various thick film strain gage characteristics were analysed, including nonlinearity, hysteresis, stability and sensitivity of thick film strain gages.

  • PDF

Fabrication of Ceramic Thin Film Type Pressure Sensors for High-Temperature Applications and Their Characteristics (고온용 세라믹 박막형 압력센서의 제작과 그 특성)

  • 정귀상
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.9
    • /
    • pp.790-794
    • /
    • 2003
  • This paper describes the fabrication and characteristics of ceramic thin film type pressure sensors based on Ta-N strain gauges for high temperature applications. Ta-N thin-film strain gauges are deposited onto a thermally oxidized Si diaphragm by RF sputtering in an argon-nitrogen atmos[here($N_2$ gas ratio: 8%, annealing condition: 90$0^{\circ}C$, 1 hr.), patterned on a wheatstone bridge configuration, and used as pressure sensing elements with a high stability and a high gauge factor. The sensitivity is 1.097 ~ 1.21 mV/Vㆍkgf/$\textrm{cm}^2$ in the temperature range of 25 ~ 200 $^{\circ}C$ and the maximum non-linearity resistance), non-linearity than existing Si piezoresistive pressure sensors. The fabricated ceramic thin-film type pressure sensor is expected to be usefully applied as pressure and load sensors that os operable under high-temperature.

Advances in Non-Interference Sensing for Wearable Sensors: Selectively Detecting Multi-Signals from Pressure, Strain, and Temperature

  • Byung Ku Jung;Yoonji Yang;Soong Ju Oh
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.340-351
    • /
    • 2023
  • Wearable sensors designed for strain, pressure, and temperature measurements are essential for monitoring human movements, health status, physiological data, and responses to external stimuli. Notably, recent research has led to the development of high-performance wearable sensors using innovative materials and device structures that exhibit ultra-high sensitivity compared with their commercial counterparts. However, the quest for accurate sensing has identified a critical challenge. Specifically, the mechanical flexibility of the substrates in wearable sensors can introduce interference signals, particularly when subjected to varying external stimuli and environmental conditions, potentially resulting in signal crosstalk and compromised data fidelity. Consequently, the pursuit of non-interference sensing technology is pivotal for enabling independent measurements of concurrent input signals related to strain, pressure, and temperature, ensuring precise signal acquisition. In this comprehensive review, we present an overview of the recent advances in noninterference sensing strategies. We explore various fabrication methods for sensing strain, pressure, and temperature, emphasizing the use of hybrid composite materials with distinct mechanical properties. This review contributes to the understanding of critical developments in wearable sensor technology that are vital for their ongoing application and evolution in numerous fields.

Study on the Split Hopkinson Pressure Bar Apparatus for Measuring High-strain Rate Tensile Properties of Plastic Material (플라스틱 소재의 고 변형률 인장특성 평가를 위한 홉킨스바(Split Hopkinson Pressure Bar) 측정 장비에 관한 연구)

  • Han, In-Soo;Lee, Se-Min;Kim, Kyu-Won;Kim, Hak-Sung
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.196-200
    • /
    • 2022
  • Split Hopkinson Pressure Bar (SHPB) is a general test equipment for measuring the mechanical properties of high modulus metal and composite materials at high strain rate. However, for the soft plastic material, it is difficult to hold the specimen and achieve dynamic stress equilibrium due to the weak transmitted signals. In this study, SHPB test apparatus were designed to measure accurately the high strain rate stress-strain curve of the soft plastic materials by changing the incident bar materials and the shape of the specimen holder parts. In addition, to verify the high strain-rate tensile strain data obtained from SHPB, the strain distribution of the specimen was measured and analyzed with a high-speed camera and the digital image correlation (DIC), which was compared with the strain history measured from SHPB.

Dynamic deformation behavior of rubber under high strain rate compressive loading (플라스틱 SHPB를 사용한 고무의 고변형률 하중하에서의 동적변형 거동)

  • 이억섭;김경준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.849-853
    • /
    • 2002
  • A specific experimental method, the split Hopkinson pressure bar (SHPB) technique has been widely used to determine the dynamic material properties under the impact compressive loading conditions with strain-rate of the order of 103/s~104/s. In this paper, dynamic deformation behaviors of rubber materials widely used for the isolation of vibration from varying structures under dynamic loading are determined using a Split Hopkinson Pressure Bar technique.

  • PDF

A new consideration for the heat transfer coefficient and an analysis of the thermal stress of the high-interim pressure turbine casing model (열전달계수에 대한 새로운 고찰 및 고-중압 터빈 케이싱 모형의 열응력 해석)

  • Um, Dall-Sun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.425-429
    • /
    • 2004
  • In real design of the high & interim pressure turbine casing, it is one of the important things to figure out its thermal strain exactly. In this paper, with the establishment of the new concept for the heat transfer coefficient of steam that is one of the factors in analysis of the thermal stress for turbine casing, an analysis was done for one of the high & interim pressure turbine casings in operating domestically. The sensitivity analysis of the heat transfer coefficient of steam to the thermal strain of the turbine casing was done with a 2-D simple model. The analysis was also done with switching of the material properties of the turbine casing and resulted in that the thermal strain of the turbine casing was not so sensitive to the heat transfer coefficient of steam. On the basis of this, 3-D analysis of the thermal strain for the high and interim pressure turbine casing was done.

  • PDF

Simplified Estimation of Settlement in Silty Sand Grounds Induced Liquefaction (액상화에 의한 실트질 모레지반의 침하 산정)

  • Rhee, Min-Ho;Kim, Tae-Hoon;Lee, Song
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.209-216
    • /
    • 2000
  • When subjected to earthquake shaking, saturated sandy soil may generate excess pore pressure. And a time may come when initial confining pressure will equal to excess pore pressure. Depending on the characteristics of the soil and the length of the drainage path, excess pore pressure was dissipated after earthquake. For this reason, it was induced settlement in grounds and fatal damage of various structures. In this study, settlement in silty sand grounds induced earthquake was evaluated using post-liquefaction constitutive equation between volumetric strain and shear strain from previous study. Using that, it was proposed that simplified estimation of settlement in silty sand grounds induced liquefaction.

  • PDF

A study on the Relations Between Fracture Strain and Fracture Resistance Curve of nuclear Pressure Vessel Steel (압력용기강의 파괴저항곡선의 파괴변형률에 관한 연구)

  • 임만배
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.1
    • /
    • pp.44-51
    • /
    • 2000
  • Safety and integrity are required for reactor pressure vessels because they are operated in high temperature. There are single specimen method multiple specimen method and load ratio analysis method which used as evaluation of safety and integrity for reactor pressure vessels. In this study the fracture resistance curve(J-R curve) elastic-plastic fracture toughness($J_{IC}$) and material tearing modulus ($T_{mat}$) of SA 508 class 3 alloy steel used as reactor pressure vessel steel are measured and evaluated at room temperature 20$0^{\circ}C$ and 30$0^{\circ}C$ according to unloading compliance method and load ration analysis method. And then the comparison with experimental $J_{IC}$ and theoretical$J_{IC}$ by local fracture strain is managed.

  • PDF