• 제목/요약/키워드: Pressure Sensor

검색결과 1,580건 처리시간 0.045초

상용차 오일압력 측정용 압력센서 제작을 위한 레이저용접기술 (Development of Laser Welding Technology for Commercial Vehicle Oil Pressure Sensor)

  • 이영민;김순동;최해운
    • Journal of Welding and Joining
    • /
    • 제30권4호
    • /
    • pp.38-43
    • /
    • 2012
  • Using a fiber laser heat source, an oil pressure sensor was fabricated to measure the pressure in commercial vehicles. A stepping motor was used for the rotational and translational motion in the diaphragms and hardware joining. Laser welding process algorism including shielding gas control and vision system was integrated by using LabVIEW software for the high quality welding and in-line monitoring purpose. For the maximum flexibility in pressure transmission to the pressure sensor, thin sheet metal diaphragm, $25{\sim}50{\mu}m$(SUS-316L), was used and the diaphragms were optimally designed with FEM analysis. The welded samples were cross-sectioned the observation showed that the maximum depth ratio was more than seven times of diaphragms. The maximum welding speed was measured to be as high as 50in/mm by the developed automation mechanism. The fabricated prototypes were tested for the proof pressure, spring constant and sealing. The FEM results of spring constant measurement was as accurate as up to 80% of the design value and the sensor was safely operated up to the nominal pressure of 10bars.

A Study on the Measurement of Respiratory Rate Using a Respirator Equipped with an Air Pressure Sensor

  • Shin, Woochang
    • International journal of advanced smart convergence
    • /
    • 제11권4호
    • /
    • pp.240-246
    • /
    • 2022
  • In order to measure the respiratory rate, one of the major vital signs, many devices have been developed and related studies have been conducted. In particular, as the number of wearers of respirators increases in the COVID-19 pandemic situation, studies have been conducted to measure the respiratory rate of the wearer by attaching an electronic sensor to the respirator, but most of them are cases in which an air flow sensor or a microphone sensor is used. In this study, we design and develop a system that measures the respiratory rate of the wearer using an air pressure sensor in a respirator. Air pressure sensors are inexpensive and consume less power than the other sensors. In addition, since the amount of data required for calculation is small and the algorithm is simple, it is suitable for small-scale and low-power processing devices such as Arduino. We developed an algorithm to measure the respiratory rate of a respirator wearer by analysing air pressure change patterns. In addition, variables that can affect air pressure changes were selected, and experimental scenarios were designed according to the variables. According to the designed scenario, we collected air pressure data while the respirator wearer was breathing. The performance of the developed system was evaluated using the collected data.

A Wireless Intraocular Pressure Sensor with Variable Inductance Using a Ferrite Material

  • Kang, Byungjoo;Hwang, Hoyong;Lee, Soo Hyun;Kang, Ji Yoon;Park, Joung-Hu;Seo, Chulhun;Park, Changkun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제13권4호
    • /
    • pp.355-360
    • /
    • 2013
  • A wireless intraocular (IOP) pressure sensor based on micro electro mechanical system (MEMS) technology is proposed. The proposed IOP sensor uses variable inductance according to the external pressure. The proposed sensor is composed of two flexible membranes: a ferrite bottom part, an inductor, and a capacitor. The inductance of the sensor varies according to the external pressure. The resonance frequency of the sensor is also varied, and this frequency is detected using an external coil. The external coil is designed with an FR-4 printed circuit board. The feasibility of the proposed sensor structure using variable inductance to detect the external pressure is successfully demonstrated.

A Study on Altitude Estimation using Smartphone Pressure Sensor for Emergency Positioning

  • Shin, Donghyun;Lee, Jung Ho;Shin, Beomju;Yu, Changsu;Kyung, Hankyeol;Choi, Dongwook;Kim, Yeji;Lee, Taikjin
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제9권3호
    • /
    • pp.175-182
    • /
    • 2020
  • This paper introduces a study to estimate the user altitude in need of rescue in an emergency. The altitude is estimated by using the barometric pressure sensor embedded in the smartphone. Compared to GPS, which is degraded in urban or indoor environments, it has the advantage of not having spatial restrictions. With the endless development of smartphone hardware, it is possible to estimate the absolute altitude using the measured value if only the bias of the embedded barometric pressure sensor is applied. The altitude information of the person in need of rescue in an emergency is a great help in reducing rescue time. Since time is tight, we propose online calibration that provides the barometric pressure sensor bias used for altitude estimation through database. Furthermore, experiments were conducted to understand the characteristics of the barometric pressure sensor, which is greatly affected by wind. At the end, the altitude estimation performance was confirmed through an actual field tests in various floors in the building.

광섬유 압력센서 (Fiber optic pressure sensor)

  • 이기완;배준형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.640-643
    • /
    • 1996
  • In this paper, a sensitivity of the fiber optic pressure sensor in water is demonstrated. A single mode optical fiber Mach-Zehnder interferometer used to detect the change in optical path length produced by the change of fiber optic strain in water. The sensitivity with this system measured 100.mu.psia through an experiment in the static response.

  • PDF

A new reconfigurable liquid-metal-antenna-based sensor

  • Zhou, Xiaoping;Fu, Yihui;Zhu, Hantao;Yu, Zihao;Wang, Shanyong
    • Smart Structures and Systems
    • /
    • 제30권4호
    • /
    • pp.353-369
    • /
    • 2022
  • In this paper, a new sensor chip with frequency reconstruction range of 2.252 GHz ~ 2.450 GHz is designed and fabricated. On this basis, a self-designed "T-shaped" shell is added to overcome the disadvantage of uneven deformation of the traditional steel shell, and the range of the sensor chip is expanded to 0 kN ~ 96 kN. The liquid metal antenna is used to carry out a step-by-step loading test, and the relationship between the antenna resonance frequency and the pressure load is analyzed. The results show that there is a good linear relationship between the pressure load and the resonant frequency. Therefore, the liquid metal antenna can be regarded as a pressure sensor. The cyclic loading and unloading experiments of the sensor are carried out, and different loading rates are used to explore the influence on the performance of the sensor. The loading and unloading characteristic curves and the influence characteristic curves of loading rate are plotted. The experimental results show that the sensor has no residual deformation during the cycle of loading and unloading. Moreover, the influence of temperature on the performance of the sensor is studied, and the temperature correction formula is derived.

질화탄탈박막을 이용한 세라믹 압력센서의 제작 (The Fabrication of a Ceramic Pressure Sensor Using Tantalum Nitride Thin-Films)

  • 정수용;최성규;이종춘;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.181-184
    • /
    • 2002
  • This paper describes fabrication and characteristics of ceramic pressure sensor for working at high temperature. The proposed pressure sensor consists of a Ta-N thin-film, patterned on a Wheatstone bridge configuration, sputter deposited onto thermally oxidized Si membranes with an aluminium interconnection layer. The fabricated pressure sensor presents a low temperature coefficient of resistance, high sensitivity, low non-linearity and excellent temperature stability The sensitivity is 1.097∼1.21 mV/V$.$kgf/$\textrm{cm}^2$ in the temperature range of 25∼200$^{\circ}C$ and the maximum non-linearity is 0.43 %FS.

  • PDF

군수용 고내압을 가지는 마이크로 압력센서의 개발 (Development of a Micro-pressure Sensor with high-resisting Pressure for Military Applications)

  • 심준환;서창택;이종현
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.1016-1021
    • /
    • 2005
  • A piezoresistive pressure sensor using a silicone rubber membrane has been fabricated on the selectively diffused (100)-oriented n/n+/n silicon substrates by a unique silicon micromachining technique using porous silicon ething. The width, length and thickness of the beam were 120${\mu}m$, 600${\mu}m$ and 7${\mu}m$, respectively and the thickness of the silicone rubber membrane was 40${\mu}m$. By the fusion of silicon beam and silicone rubber membrane, the mechanical strength of the pressure sensor could be highly improved due to smaller shear stress. The effectiveness of the sensor was confirmed through an experiment and FEM simulation in which the pressure sensor was characterized.

  • PDF

실리콘 저항형 압력센서의 온도 보상에 관한 연구 (A Study on Temperature Compensation of Silicon Piezoresistive Pressure Sensor)

  • 최시영;박상준;김우정;정광화;김국진
    • 대한전자공학회논문지
    • /
    • 제27권4호
    • /
    • pp.563-570
    • /
    • 1990
  • A silicon pressure sensor made of a full bridge of diffused resistors was designed and fabricated using semiconductor integrated circuit process. Thin diaphragms with 30\ulcorner thickness were obtained using anisotropic wet chemical etching technique. Our device showed strong temperature dependence. Compensation networks are used to compensate for the temperature dependence of the pressure sensor. The bridge supply voltage having positive temperature coefficient by compensation networks was utilized against the negative temperature coefficient of bridge output voltage. The sensitivity fluctuation of pressure sensor before temperature compensation was -1700 ppm/\ulcorner, while it reduced to -710ppm\ulcorner with temperature compensation. Our result shows that the we could develop accurate and reliable pressure sensor over a wide temperature range(-20\ulcorner~50\ulcorner).

  • PDF

LC 공진을 이용한 원격측정용 실리콘 압력센서 (Telemetry Silicon Pressure Sensor Using LC Resonance)

  • 김순영;박진성;양상식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 C
    • /
    • pp.2254-2256
    • /
    • 2000
  • This paper presents an implantable telemetry LC resonance-type pressure sensor for the measurement of the ventricle pressure. This sensor consists of a capacitor and an inductor. This resonant circuit is magnetically coupled with an external antenna coil. The resonance frequency of the circuit decreases as the sensor capacitance is increased by the applied pressure. The inductance and the capacitance are 428nH and 0.98${\mu}F$, respectively. The resonance frequency is 245.7MHz when the differential pressure is zero. The sensitivity of the sensor is 9.477kHz/Pa.

  • PDF