• Title/Summary/Keyword: Pressure Sensitive

Search Result 791, Processing Time 0.029 seconds

A Study on Operation Characteristics of Planar-type SOFC System Integrated with Fuel Processor (연료개질기를 연계한 고체 산화물 연료전지 시스템의 운전 특성에 관한 연구)

  • Ji Hyun-Jin;Lim Sung-Kwang;Yoo Yung-Sung;Bae Joong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.8 s.251
    • /
    • pp.731-740
    • /
    • 2006
  • The solid oxide fuel cell (SOFC) is expected to be a candidate for distributed power sources in the next generation, due to its high efficiency and high-temperature waste heat utilization. In this study, the 5-cell SOFC stack was operated with pure hydrogen or reformed gas at anode side and air at cathode side. When stack was operated with diesel and methane ATR reformer, the influence of the $H_2O/C,\;O_2/C$ and GHSV on performance of stacks have been investigated. The result shows that the cell voltage was decreased with the increase of $H_2O/C$ and $O_2/C$ due to the partial pressure of fuel and water, and cell voltage was more sensitive to $O_2/C$ than $H_2O/C$. Next, the dynamic model of SOFC system included with ATR reformer was established and compared with experimental data. Based on dynamic model, the operation strategy to optimize SOFC-Reformer system was suggested and simulated.

Formulation and Evaluation of Controlled Release Patch Containing Naproxen (나프록센 함유 방출제어형 패취의 제제설계 및 평가)

  • Rhee, Gye-Ju;Hong, Seok-Cheon;Hwang, Sung-Joo
    • Journal of Pharmaceutical Investigation
    • /
    • v.29 no.4
    • /
    • pp.343-348
    • /
    • 1999
  • The purpose of this study is to prepare the controlled release adhesive patch containing naproxen. Pressuresensitive adhesive (PSA)-type patch was fabricated by casting of polyisobutylene (PIE.) and mineral oil in toluene. Membrane-controlled release (MCR)-type patch was prepared by the attachment of the controlled release membrane on the PSAtype patch. The membrane was mainly composed of Eudragit, polyethylene glycol(PEG) and glycerin. The drug release profile and skin permeation test with various patches were evaluated in vitro. The release of naproxen from PIE-based PSAtype patch with various loading doses fitted Higuchi's diffusion equation. However, the permeation of naproxen through hairless mouse skin from PSA-type patch followed zero-order kinetics. In MCR-type patch, thickness of controlled release membrane affected on the drug release rate highly. In the composition of membrane, the release rate was decreased as the ratio of Eudragit increased. The drug release from the MCR-type patch followed zero order kinetics. The permeation of naproxen through hairless mouse skin from MCR-type patch showed lag time for the intial release period and didn't fit the zero-order kinetics

  • PDF

Performance Improvement based on the Teaching Control for Sweeping Robot (연마로봇의 교시기반 제어에 의한 성능개선)

  • Jin, Taeseok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1525-1530
    • /
    • 2014
  • In this research, we describe teaching based sweeping control for grinder robot has been proposed as a system which is suitable to work utilizing pressure sensitive alternative to human. Teaching method is used for grinder robots operations because of their position accuracy, path accuracy, and machining reaction force. A grinder robot for two-dimensional iron plate was developed on the basis of an force sensor based teaching method. An automatic-path-generation method and experimental results using specific points was adopted to reduce the number of teaching points and time. And also, in order to determine the proper machining conditions, various machining conditions such as grinder-wheel rotation speed and robot moving speed, were evaluated.

Adhesive and Removable Characteristics of UV Curable Adhesive (자외선 경화형 점착제의 접착 및 재박리 특성)

  • Kim, In Beom;Lee, Myung Cheon
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.76-81
    • /
    • 2008
  • UV curable pressure sensitive adhesive (PSA) was made by blending the di-functional or hexa-functional urethane-acrylate oligomer with synthesized acrylic PSA. The change of adhesive property and removability were investigated at various oligomer contents under each oligomer. As the content of oligomer increased, the peel strength was increased before UV irradiation, but it was decreased after UV irradiation. Also, it was observed that the peel strength increased with decrease of storage modulus (G'), and that loss factor (tan ${\delta}$) of the adhesive material affected the adhesive properties and removability.

Exploring the Feasibility of Differentiating IEEE 802.15.4 Networks to Support Health-Care Systems

  • Shin, Youn-Soon;Lee, Kang-Woo;Ahn, Jong-Suk
    • Journal of Communications and Networks
    • /
    • v.13 no.2
    • /
    • pp.132-141
    • /
    • 2011
  • IEEE 802.15.4 networks are a feasible platform candidate for connecting all health-care-related equipment dispersed across a hospital room to collect critical time-sensitive data about patient health state, such as the heart rate and blood pressure. To meet the quality of service requirements of health-care systems, this paper proposes a multi-priority queue system that differentiates between various types of frames. The effect of the proposed system on the average delay and throughput is explored herein. By employing different contention window parameters, as in IEEE 802.11e, this multi-queue system prioritizes frames on the basis of priority classes. Performance under both saturated and unsaturated traffic conditions was evaluated using a novel analytical model that comprehensively integrates two legacy models for 802.15.4 and 802.11e. To improve the accuracy, our model also accommodates the transmission retries and deferment algorithms that significantly affect the performance of IEEE 802.15.4. The multi-queue scheme is predicted to separate the average delay and throughput of two different classes by up to 48.4% and 46%, respectively, without wasting bandwidth. These outcomes imply that the multi-queue system should be employed in health-care systems for prompt allocation of synchronous channels and faster delivery of urgent information. The simulation results validate these model's predictions with a maximum deviation of 7.6%.

Quantitative impact response analysis of reinforced concrete beam using the Smoothed Particle Hydrodynamics (SPH) method

  • Mokhatar, S.N.;Sonoda, Y.;Kueh, A.B.H.;Jaini, Z.M.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.917-938
    • /
    • 2015
  • The nonlinear numerical analysis of the impact response of reinforced concrete/mortar beam incorporated with the updated Lagrangian method, namely the Smoothed Particle Hydrodynamics (SPH) is carried out in this study. The analysis includes the simulation of the effects of high mass low velocity impact load falling on beam structures. Three material models to describe the localized failure of structural elements are: (1) linear pressure-sensitive yield criteria (Drucker-Prager type) in the pre-peak regime for the concrete/mortar meanwhile, the shear strain energy criterion (Von Mises) is applied for the steel reinforcement (2) nonlinear hardening law by means of modified linear Drucker-Prager envelope by employing the plane cap surface to simulate the irreversible plastic behavior of concrete/mortar (3) implementation of linear and nonlinear softening in tension and compression regions, respectively, to express the complex behavior of concrete material during short time loading condition. Validation upon existing experimental test results is conducted, from which the impact behavior of concrete beams are best described using the SPH model adopting an average velocity and erosion algorithm, where instability in terms of numerical fragmentation is reduced considerably.

Wind-tunnel tests on high-rise buildings: wind modes and structural response

  • Sepe, Vincenzo;Vasta, Marcello
    • Wind and Structures
    • /
    • v.18 no.1
    • /
    • pp.37-56
    • /
    • 2014
  • The evaluation of pressure fields acting on slender structures under wind loads is currently performed in experimental aerodynamic tests. For wind-sensitive structures, in fact, the knowledge of global and local wind actions is crucial for design purpose. This paper considers a particular slender structure under wind excitation, representative of most common high-rise buildings, whose experimental wind field on in-scale model was measured in the CRIACIV boundary-layer wind tunnel (University of Florence) for several angles of attack of the wind. It is shown that an efficient reduced model to represent structural response can be obtained by coupling the classical structural modal projection with the so called blowing modes projection, obtained by decomposing the covariance or power spectral density (PSD) wind tensors. In particular, the elaboration of experimental data shows that the first few blowing modes can effectively represent the wind-field when eigenvectors of the PSD tensor are used, while a significantly larger number of blowing modes is required when the covariance wind tensor is used to decompose the wind field.

The Structural and Electrical Properties of PbO Photoconductive Film (PbO 광도전막의 구조적 및 전기적 특성)

  • Park, Ki-Cheol;Nam, Ki-Hong;Kim, Ki-Wan
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.4
    • /
    • pp.73-80
    • /
    • 1989
  • The image sensitive PbO photoconductive films were fabricated ar several deposition conditions such as $O_2$ gas pressure, deposition rate, and substrate temperature. And the effects of these deposition condition on the structural and electrical properties of them were investigated with the aid of scanning electron photomicrographs. X-ray diffraction patterns, and current-valtage chatacteristics. The results show that when PbO film has red tetragonal structure and its dominant orientations are <110> and <010> direction, photocurrent-darkcurrent ratio and light transfer ratio are increase.

  • PDF

Anisotropy of the Electrical Conductivity of the Fayalite, Fe2SiO4, Investigated by Spin Dimer Analysis

  • Lee, Kee Hag;Lee, Jeeyoung;Dieckmann, Rudiger
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.629-632
    • /
    • 2013
  • Many properties of inorganic compounds are sensitive to changes in the point-defect concentrations. In minerals, such changes are influenced by temperature, pressure, and chemical impurities. Olivines form an important class of minerals and are magnesium-rich solid solutions consisting of the orthosilicates forsterite $Mg_2SiO_4$ and the fayalite $Fe_2SiO_4$. Orthosilicates have an orthorhombic crystal structure and exhibit anisotropic electronic and ionic transport properties. We examined the anisotropy of the electrical conductivity of $Fe_2SiO_4$ under the assumption that the electronic conduction in $Fe_2SiO_4$ occurs via a small polaron hopping mechanism. The anisotropic electrical conductivity is well explained by the electron transfer integrals obtained from the spin dimer analysis based on tight-binding calculations. The latter analysis is expected to provide insight into the anisotropic electrical conductivities of other magnetic insulators of transition metal oxides.

Molecular Emission Spectrometric Detection of Low Level Sulfur Using Hollow Cathode Glow Discharge

  • Koo, Il-Gyo;Lee, Woong-Moo
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.1
    • /
    • pp.73-78
    • /
    • 2004
  • A highly sensitive detecting method has been developed for determining part per billion of sulfur in $H_2S$/Ar plasma. The method is based on the excitation of Ar/$H_2S\;or\;Ar/H_2S/O_2$ mixture in hollow cathode glow discharge sustained by radiofrequency (RF) or 60 Hz AC power and the spectroscopic measurement of the intensity of emission lines from electronically excited $S_2^*\;or\;SO_2^*$ species, respectively. The RF or AC power needed for the excitation did not exceed 30 W at a gas pressure maintained at several mbar. The emission intensity from the $SO_2^*$ species showed excellent linear response to the sulfur concentration ranging from 5 ppbv, which correspond to S/N = 5, to 500 ppbv. But the intensity from the $S_2^*$ species showed a linear response to the $H_2S$ only at low flow rate under 20 sccm (mL/min) of the sample gas. Separate experiments using $SO_2$ gas as the source of sulfur demonstrated that the presence of $O_2$ in the argon plasma is essential for obtaining prominent $SO_2^*$ emission lines.