Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.2.629

Anisotropy of the Electrical Conductivity of the Fayalite, Fe2SiO4, Investigated by Spin Dimer Analysis  

Lee, Kee Hag (Department of Materials Science and Engineering, Bard Hall, Cornell University)
Lee, Jeeyoung (Department of Chemistry, Nanoscale Science and Technology Institute, Wonkwang University)
Dieckmann, Rudiger (Department of Materials Science and Engineering, Bard Hall, Cornell University)
Publication Information
Abstract
Many properties of inorganic compounds are sensitive to changes in the point-defect concentrations. In minerals, such changes are influenced by temperature, pressure, and chemical impurities. Olivines form an important class of minerals and are magnesium-rich solid solutions consisting of the orthosilicates forsterite $Mg_2SiO_4$ and the fayalite $Fe_2SiO_4$. Orthosilicates have an orthorhombic crystal structure and exhibit anisotropic electronic and ionic transport properties. We examined the anisotropy of the electrical conductivity of $Fe_2SiO_4$ under the assumption that the electronic conduction in $Fe_2SiO_4$ occurs via a small polaron hopping mechanism. The anisotropic electrical conductivity is well explained by the electron transfer integrals obtained from the spin dimer analysis based on tight-binding calculations. The latter analysis is expected to provide insight into the anisotropic electrical conductivities of other magnetic insulators of transition metal oxides.
Keywords
Fayalite; $Fe_2SiO_4$; Anisotropic electrical conductivity; Electron hopping; Spin dimer analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lottermoser, W.; Steiner, K.; Grodzicki, M.; Jiang, K.; Scharfetter, G.; Bats, J. W.; Redhammer, G.; Treutmam, W.; Hosoya, S.; Amthauer, G. Phys. Chem. Minerals 2002, 29, 112.   DOI
2 Mao, H. K.; Bell, P. M. Science 1972, 176, 403.   DOI   ScienceOn
3 Williams, Q.; Knittle, E.; Reichlin, R.; Martin, S.; Jeanloz, R. J. Geophys. Res. B 1990, 95(13), 21549.   DOI
4 Brown, G. E., Jr. Olivines and Silicate Spinels; In Reviews in Mineralogy, Ribbe, P. H., Ed.; Mineralogical Soc. Amer.: Washington, D. C., 1980; Vol. 5, Chap. 11.
5 Smyth, J. R. Am. Mineral. 1975, 60, 1092.
6 Fuess, H.; Ballet, O.; Lottermoser, W. Structural and Magnetic Phase Transitions in Minerals. In Advances in Physical Geochemistry, Ghose, S., Coey, J. M. D., Salje, E., Eds.; Springer- Verlag: Berlin, 1988; Vol. 7, p 185.
7 Tsai, T.-L.; Dieckmann, R. Materials Science Forum 1997, 239, 399
8 Schock, R. N.; Duba, A. G.; Shankland, T. J. J. Geophys. Res. 1989, 94, 5829.   DOI
9 Sockel, H. G. Defect Structure and Electrical Conductivity of Crystalline Ferrous Silicate; In Defects and Transport in Oxide; Seltzer, M. S.; Jaffee, R. I., Eds.; Prenum Press: New York, 1974; pp 341-356.
10 Schock, R. N.; Duba, A. C. In Point Defects and the Mechanisms of Electrical Conduction in Olivine; Shock, R. N., Ed.; Amer. Geophys. Union: Washington, D. C., 1985; pp 88-96.
11 Hirsch, L. M.; Shankland, T. J.; Duba, A. G. Geophys. J. Int. 1993, 114, 36.   DOI   ScienceOn
12 Constable, S.; Roberts, J. J. Phys. Chem. Minerals 1997, 24, 319.   DOI
13 Hafner, J.; Wolverton, C.; Ceder, G. MRS Bulletin 2006, 31, 659.   DOI
14 Cococcioni, M.; Corso, A. D.; de Gironcoli, S. Phys. Rev. B 2003, 67, 094106.   DOI   ScienceOn
15 Mott, N. F. Metal-Insulator Transitions; Taylor and Frances: London, 1974.
16 Anisimov, V. I.; Zaanen, J.; Andersen, O. K. Phys. Rev. B 1991, 44, 943.   DOI   ScienceOn
17 Jiang, X.; Guo, G. Y. Phys. Rev. B 2004, 69, 155108.   DOI   ScienceOn
18 Whangbo, M.-H.; Koo, H.-J.; Dai, D. J. Solid State Chem. 2003, 176, 417.   DOI   ScienceOn
19 Kroger, F. A. The Chemistry of Imperfect Crystals; North-Holland Pub. Co.: Amsterdam, 1974.
20 Tyburczy, J. A.; Fisler, D. K. Electrical Properties of Minerals and Melts; In Mineral Physics and Crystallography, A Handbook of Physical Constants; Amer. Geophys. Union: Washington, D. C., 1995; pp 185-208.
21 Coropceanu, V.; André, J. M.; Malagori, M.; Brédas, J. L. Theo. Chem. Acc. 2003, 110, 59.   DOI
22 Newton, M. D. Electron Transfer: Theoretical Models and Computational Implementation, In Electron Transfer in Chemistry; Balzani, V., Ed.; Wiley-VCH: New York, 2001; Chap. 1.
23 Marcus, R. A. Rev. Mod. Phys. 1993, 65, 599.   DOI   ScienceOn
24 Albright, T. A.; Burdett, J. K.; Whangbo, M.-H. Orbital Interactions in Chemistry; Wiley: New York, 198; Chapter 2.
25 Koo, H.-J.; Whangbo, M.-H.; Coste, S.; Jobic, S. J. Solid State Chem. 2001, 156, 464.   DOI   ScienceOn
26 Dai, D.; Koo, H.-J.; Whangbo, M.-H. In MRS Symposium Proceedings, Vol. 658; Geselbracht, M. J., Greedan, J. E., Johnson, D. C., Subramanian, M. A., Eds.; Materials Research Society: Warrendale, PA, 2001; GG5.3.1-5.3.11.
27 Whangbo, M.-H.; Koo, H.-J.; Dai, D.; Jung, D. Inorg. Chem. 2002, 41, 5575.   DOI   ScienceOn
28 Whangbo, M.-H.; Koo, H.-J.; Dumas, J.; Continentino, M. A. Inorg. Chem. 2002, 41, 2193.   DOI   ScienceOn
29 Clementi, E.; Roetti, C. Atomic Data Nuclear Data Tables 1974, 14, 177.   DOI
30 Dai, D.; Ren, J.; Liang, W.; Whangbo, M.-H. http://chvamw.chem.ncsu.edu/, 2002.
31 Ammeter, J.; Bürgi, H.-B.; Thibeault, J.; Hoffmann, R. J. Am. Chem. Soc. 1978, 100, 3686.   DOI
32 Lee, K. H.; Dieckmann, R.; Lee, C.; Whangbo, M.-H. Chem. Mater. 2007, 19, 4393.   DOI   ScienceOn
33 Mott, N. F. Metal-Insulator Transitions, 2nd ed.; Taylor & Francis: New York, 1990.
34 Brodholt, J. P.; Voèadlo, L. MRS Bulletin 2006, 31, 675.   DOI