DOI QR코드

DOI QR Code

Molecular Emission Spectrometric Detection of Low Level Sulfur Using Hollow Cathode Glow Discharge

  • Koo, Il-Gyo (Department of Molecular Science and Technology, Ajou University) ;
  • Lee, Woong-Moo (Department of Molecular Science and Technology, Ajou University)
  • Published : 2004.01.20

Abstract

A highly sensitive detecting method has been developed for determining part per billion of sulfur in $H_2S$/Ar plasma. The method is based on the excitation of Ar/$H_2S\;or\;Ar/H_2S/O_2$ mixture in hollow cathode glow discharge sustained by radiofrequency (RF) or 60 Hz AC power and the spectroscopic measurement of the intensity of emission lines from electronically excited $S_2^*\;or\;SO_2^*$ species, respectively. The RF or AC power needed for the excitation did not exceed 30 W at a gas pressure maintained at several mbar. The emission intensity from the $SO_2^*$ species showed excellent linear response to the sulfur concentration ranging from 5 ppbv, which correspond to S/N = 5, to 500 ppbv. But the intensity from the $S_2^*$ species showed a linear response to the $H_2S$ only at low flow rate under 20 sccm (mL/min) of the sample gas. Separate experiments using $SO_2$ gas as the source of sulfur demonstrated that the presence of $O_2$ in the argon plasma is essential for obtaining prominent $SO_2^*$ emission lines.

Keywords

References

  1. Centineo, G.; Fernandez, M. Anal. Chem. 1997, 69, 3702. https://doi.org/10.1021/ac970412z
  2. Farwell, S. O.; Barinaga, C. J. J. Chromatogr. Sci. 1986, 24, 483. https://doi.org/10.1093/chromsci/24.11.483
  3. Steven, R. K.; Mulik, J. D.; Okeeffe, A. E.; Krost, K. J. Anal. Chem. 1971, 43, 827. https://doi.org/10.1021/ac60302a008
  4. Benner, R. L.; Stedman, D. H. Applied Spectroscopy 1994, 48,848. https://doi.org/10.1366/0003702944029901
  5. Benner, R. L.; Stedman, D. H. Anal. Chem. 1989, 61, 1268. https://doi.org/10.1021/ac00186a018
  6. Shearer, R. L. Anal. Chem. 1992, 64, 2192. https://doi.org/10.1021/ac00042a030
  7. Benner, R. L.; Stedman, D. H. Environ. Sci. Technol. 1990, 24,1592. https://doi.org/10.1021/es00080a021
  8. Bings, N. H.; Bogaerts, A.; Broekaert, J. A. C. Anal. Chem. 2002,74, 2691. https://doi.org/10.1021/ac020190r
  9. Benner, R. L.; Stedman, D. H. U.S. Patent 5,424,217, 1995.
  10. Zachariah, M. R.; Smith, O. I. Combustion and Flame 1987, 69,125. https://doi.org/10.1016/0010-2180(87)90026-5
  11. Orellana-Velado, N. G.; Fernandez, M. Spectrochim. Acta part B2001, 56, 113. https://doi.org/10.1016/S0584-8547(00)00301-3
  12. Anfone, A. B.; Marcus, R. K. J. Anal. At. Spectrom. 2001, 16, 506. https://doi.org/10.1039/b009874o
  13. Marcus, R. K. Glow Discharge Spectroscopies; Plenum Press:New York, 1993.
  14. Marcus, R. K.; Davis, W. C. Anal. Chem. 2001, 73, 2903. https://doi.org/10.1021/ac010158h
  15. Parker, M.; Hartenstein, M. L.; Marcus, R. K. Spectrochim. ActaPart B 1997, 52, 567. https://doi.org/10.1016/S0584-8547(96)01659-X
  16. You, J.; Fanning, J. C.; Marcus, R. K. Anal. Chem. 1994, 66, 3916. https://doi.org/10.1021/ac00094a012
  17. You, J.; Dempster, M. A.; Marcus, R. K. Anal. Chem. 1997, 69,3419. https://doi.org/10.1021/ac970417w
  18. Dempster, M. A.; Marcus, R. K. Spectrochim. Acta part B 2000,55, 599. https://doi.org/10.1016/S0584-8547(00)00188-9
  19. Chuaqui, H.; Favre, M.; Soto, L.; Wyndham, E. S. IEEE Trans.Plasma Sci. 1993, 21, 778. https://doi.org/10.1109/27.256799
  20. Eijkel, J. C. T.; Stoeri, H.; Andreas, M. Anal. Chem. 2000, 72,2547. https://doi.org/10.1021/ac991380d
  21. Engel, U.; Bilgic, A. M.; Haase, O.; Voges, E.; Broekaert, A. C.Anal. Chem. 2000, 72, 193. https://doi.org/10.1021/ac9906476
  22. Jin, Z.; Su, Y.; Duan, Y. Anal. Chem. 2001, 73, 360. https://doi.org/10.1021/ac000678x
  23. Halstead, C. J.; Thrush, B. A. Proc. Roy. Soc. A 1966, 295, 380. https://doi.org/10.1098/rspa.1966.0248
  24. Jeong, J. Y.; Park, J.; Henins, I.; Babayan, S. E.; Tu, V. J.; Selwyn,G. S.; Ding, G.; Hicks, R. F. J. Phys. Chem. A 2000, 104, 8027. https://doi.org/10.1021/jp0012449
  25. Chu, Y.; Wang, H.; Li, J.; Cheng, P.; Cao, D. Chem. Phys. Lett.2002, 366, 147. https://doi.org/10.1016/S0009-2614(02)01525-7
  26. Brown, S. C. Basic Data of Plasma Physics; AIP press: NewYork, N.Y, 1994.
  27. Liberman, M. A.; Lichtenberg, A. J. Principles of Plasma Discharge and Materials Processing; John Wiley & son, Inc: NewYork, N.Y, 1994.

Cited by

  1. Radiofrequency driven and low cost fabricated microhollow cathode discharge for gaseous atomic emission spectrometry vol.26, pp.3, 2011, https://doi.org/10.1039/C0JA00216J