• Title/Summary/Keyword: Pressure Sensitive

Search Result 787, Processing Time 0.023 seconds

Validation of Urine Volume Evaluation by Hydraulic Pressure Measurement (압력 측정에 의한 요량 계측의 유용성 분석)

  • Kim, Kyung-Ah;Choi, Sung-Soo;Lee, In-Kwang;Park, Kyung-Soon;Kim, Wun-Jae;Lee, Tae-Soo;Cha, Eun-Jong
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.4
    • /
    • pp.577-584
    • /
    • 2007
  • Uroflowmetry is non-invasive and easily performed to diagnose benign prostatic hypertrophy(BPH) frequent in aged men. Weight change during urination is usually measured to estimate the urinary flow rate by a load cell, but sensitive to any impacts against the bottom of the container, leading to unnecessary noise generation. Moreover, load cells are relatively expensive raising the production cost. The present study proposed a new technique, measuring hydraulic pressure on the bottom of the urine container to evaluate the urinary volume. Low cost pressure transducer enabled almost perfectly linear relationship between the urine volume and the hydraulic pressure. During both the simulated and human urination experiments, variance of the pressure signal was more than 50% smaller than the weight signal acquired by a load cell, which demonstrated that the impact noise was decreased to a great degree by pressure compared to weight measurement.

Cardiovascular Effects of Gentamicin Administration in Rats (흰쥐에서 Gentamicin 투여가 심혈관계에 미치는 영향)

  • 김상진;강형섭;백삼권;박상열;김인식;김남수;김진상
    • Journal of Veterinary Clinics
    • /
    • v.21 no.3
    • /
    • pp.291-297
    • /
    • 2004
  • Aminoglycosidic antibiotics have multiple effects on muscle. For example, they have been shown to block L-type $Ca^{2+}$ channels in vascular smooth muscle, cardiac muscle and skeletal muscle. Possibly as a consequence of this effect on $Ca^{2+}$ influx, they have been shown to decrease the contractility of cardiac muscle (gentamicin). The present study evaluated the effects of gentamicin on blood pressure, vasorelaxation and left ventricular pressure. Gentamicin(10, 20, 40mg/kg) produced dose-dependent blood pressure lowering in rat. The pretreatment of MgSO$_4$ and imipramine (Na$^{+}$-Mg$^{2+}$ exchange inhibitor) had no effect in gentamicin-induced hypotension. However, the gentamicin-induced hypotension was significantly potentiated in the preincubation of verapamil or nifedipine (L-type $Ca^{2+}$ channel blockers), and was significantly attenuated by CaCl$_2$ and was slightly attenuated by caffeine (phosphodiesterase inhibitor). Gentamicin (10, 30, 100$\mu$g/m1) did not have an effect on relaxation of phenylephrine-precontracted aortic rings but high concentration of gentamicin(100, 300$\mu$g/ml) relaxed KCl-precontracted aortic rings, which relaxation was potentiated by treatment of nifedipine. Whereas gentamicin markedly decreased left ventricular developed pressure (LVDP) in perfused heart. These data suggest that gentamicin has significant blood pressure lowering of the rat, which seems to be mediated by calcium channel-sensitive pathway and blood $Ca^{2+}$ level may be important role in this response.

Highly Sensitive Tactile Sensor Using Single Layer Graphene

  • Jung, Hyojin;Kim, Youngjun;Jin, Hyungki;Chun, Sungwoo;Park, Wanjun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.229.1-229.1
    • /
    • 2014
  • Tactile sensors have widely been researched in the areas of electronics, robotic system and medical tools for extending to the form of bio inspired devices that generate feeling of touch mimicking those of humans. Recent efforts in adapting the tactile sensor have included the use of novel materials with both scalability and high sensitivity [1]. Graphene, a 2-D allotrope of carbon, is a prospective candidate for sensor technology, having strong mechanical properties [2] and flexibility, including recovery from mechanical stress. In addition, its truly 2-D nature allows the formation of continuous films that are intrinsically useful for realizing sensing functions. However, very few investigations have been carrier out to investigate sensing characteristics as a device form with the graphene subjected to strain/stress and pressure effects. In this study, we present a sensor of vertical forces based on single-layer graphene, with a working range that corresponds to the pressure of a gentle touch that can be perceived by humans. In spite of the low gauge factor that arises from the intrinsic electromechanical character of single-layer graphene, we achieve a resistance variation of about 30% in response to an applied vertical pressure of 5 kPa by introducing a pressure-amplifying structure in the sensor. In addition, we demonstrate a method to enhance the sensitivity of the sensor by applying resistive single-layer graphene.

  • PDF

Ergonomic Designs of the Halter-neck Shoulder Strap for Developing the Athleisure Brassiere (애슬래저용 브래지어 개발을 위한 인간공학적 홀터넥 어깨끈의 디자인과 설계)

  • Park, Soyoung;Lee, Yejin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.44 no.1
    • /
    • pp.96-106
    • /
    • 2020
  • This study designed four types with a different halter-neck shoulder straps of an athleisure brassiere for women in their 20-40s as well as analyzed the shoulder strap pressure, shoulder strap position, subjective sensation, and design preference when wearing them. The design basis was to reduce the pressure at the back of the neck area, to allow the shoulder strap to pass down the neck as far as possible, and to send the anatomically sensitive side neck out as far as possible. As a result, H, which had the best subjective sensation and design preference, had the shoulder strap positioned more towards the shoulder point; in addition, the back of the neck did not pass. It was also found that the shoulder strap pressure near the neck was small. However, E, with the lowest subjective sensation, had the highest shoulder strap pressure and was placed up the neck. This confirmed that the position and pressure of the shoulder strap are variable when influencing the subjective sensation.

Recognition of Stance Phase for Walking Assistive Devices by Foot Pressure Patterns (족압패턴에 의한 보행보조기를 위한 입각기 감지기법)

  • Lee, Sang-Ryong;Heo, Geun-Sub;Kang, Oh-Hyun;Lee, Choon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.223-228
    • /
    • 2011
  • In this paper, we proposed a technique to recognize three states in stance phase of gait cycle. Walking assistive devices are used to help the elderly people walk or to monitor walking behavior of the disabled persons. For the effective assistance, they adopt an intelligent sensor system to understand user's current state in walking. There are three states in stance phase; Loading Response, Midstance, and Terminal Stance. We developed a foot pressure sensor using 24 FSRs (Force Sensing/Sensitive Resistors). The foot pressure patterns were integrated through the interpolation of FSR cell array. The pressure patterns were processed to get the trajectories of COM (Center of Mass). Using the trajectories of COM of foot pressure, we can recognize the three states of stance phase. The experimental results show the effective recognition of stance phase and the possibility of usage on the walking assistive device for better control and/or foot pressure monitoring.

Development of Integration Pressure Sensor Using Piezoresistive Effect of Chemical Vapor Deposition (CVD) Produced Multilayer Graphene (CVD공정으로 제작된 멀티레이어 그래핀의 압저항 효과를 이용한 직접화된 압력센서 개발)

  • Dae-Yun Lim;Tae Won Ha;Chil-Hyoung Lee
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.470-474
    • /
    • 2023
  • In this study, a diaphragm-type pressure sensor was developed using multi-layer(four-layer) graphene produced at 1 nm thickness by thermally transferring single-layer graphene produced by chemical vapor deposition (CVD) to a 6" silicon wafer. By measuring the gauge factor, we investigated whether it was possible to produce a pressure sensor of consistent quality. As a result of the measurement, the pressure sensor using multilayer graphene showed linearity and had a gauge factor of about 17.5. The gauge factor of the multilayer graphene-based pressure sensor produced through this study is lower than that of doped silicon, but is more sensitive than a general metal sensor, showing that it can be sufficiently used as a commercialized sensor.

Simulation of Pressure Oscillation in Water Caused by the Compressibility of Entrapped Air in Dam Break Flow (댐 붕괴 유동에서 갇힌 공기의 압축성에 의한 물의 압력 진동 모사)

  • Shin, Sangmook
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.1
    • /
    • pp.56-65
    • /
    • 2018
  • Pressure oscillation caused by the compressibility of entrapped air in dam break flow is analyzed using an open source code, which is a two-phase compressible code for non-isothermal immiscible fluids. Since compressible flows are computed based on a pressure-based method, the code can handle the equation of state of barotropic fluid, which is virtually incompressible. The computed time variation of pressure is compared with other experimental and computational results. The present result shows good agreements with other results until the air is entrapped. As the entrapped air bubbles pulsate, pressure oscillations are predicted and the pressure oscillations damp out quickly. Although the compressibility parameter of water has been varied for a wide range, it has no effects on the computed results, because the present equation of state for water is so close to that of incompressible fluid. Grid independency test for computed time variation of pressure shows that all results predict similar period of pressure oscillation and quick damping out of the oscillation, even though the amplitude of pressure oscillation is sensitive to the velocity field at the moment of the entrapping. It is observed that as pressure inside the entrapped air changes quickly, the pressure field in the neighboring water adjusts instantly, because the sound of speed is much higher in water. It is confirmed that the period of pressure oscillation is dominated by the added mass of neighboring water. It is found that the temperature oscillation of the entrapped air is critical to the quick damping out of the oscillations, due to the fact that the time averaged temperature inside the entrapped air is higher than that of surrounding water, which is almost constant.

The Elastic Contact Analysis of 3D Rough Surface including the Kurtosis (Kurtosis를 고려한 3차원 거친 표면의 탄성 접촉 해석)

  • 김태완;강민호;구영필;조용주
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.34-41
    • /
    • 2000
  • Surface roughness plays a significant role in friction, wear, and lubrication in machine components. Most engineering surfaces have the nongaussian distrubution. So, in this study, contact simulation are conducted for not only gaussian surfaces but also nongaussian surfaces. Nongaussian rough surface censidering the kurtosis is generated numerically, And the effects of kurtosis on real contact area fraction, average gap, and mean asperity contact pressure are studied. It will be shown that the real contact area fraction and the mean asperity contact pressure are sensitive to the characteristics of surface geometry according to kurtosis.

  • PDF

Experimental investigation on the buckling of thin cylindrical shells with two-stepwise variable thickness under external pressure

  • Aghajari, Sirous;Showkati, Hossein;Abedi, Karim
    • Structural Engineering and Mechanics
    • /
    • v.39 no.6
    • /
    • pp.849-860
    • /
    • 2011
  • The buckling capacity of the cylindrical shells depends on two geometric ratios of L/R and R/t. However the effect of thickness variation on the behavior of the shells is more complicated and the buckling strength of them is sensitive to the magnitude and shape of geometric imperfections. In this paper the effects of thickness variation and geometric imperfections on the buckling and postbuckling behavior of cylindrical shells are experimentally investigated. The obtained results are presented under the effect of uniform lateral pressure. It is found in this investigation that the buckling mode can be generated in the whole length of the shell, if the thickness variation is low.

Acoustic Response of Hydrogen/Liquid Oxygen Flame in Stagnation-Point Flow (정체점 유동장에서 수소-액체산소 화염의 음향파 응답 특성)

  • Park, Sung-Woo;Chung, Suk-Ho;Kim, Hong-Jip
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.440-446
    • /
    • 2003
  • Steady-state structure and acoustic pressure responses of GH$_2$-LOx diffusion flames in stagnation-point flow configuration have been studied numerically with a detailed chemistry to investigate the acoustic instabilities. The Rayleigh criterion is adopted to judge the instability of the GH$_2$-LOx flames from amplification and attenuation responses at various acoustic pressure oscillation conditions for near-equilibrium to near-extinction regimes. Steady state flame structure showed that the chain branching zone is embedded in surrounding two recombination zones. The acoustic responses of GH$_2$-LOx flame showed that the responses in near-extinction regime always have amplification effect regardless of realistic acoustic frequency. That is, GH$_2$-LOx flame near-extinction is much sensitive to pressure perturbation because of the strong effect of a finite-chemistry.