• 제목/요약/키워드: Pressure Prediction Model

검색결과 867건 처리시간 0.032초

노심 용융물 제트 충돌에 의한 희생물질의 침식예측 (Prediction of sacrificial material ablation rate by corium jet impingement)

  • 서정수;김한곤
    • 에너지공학
    • /
    • 제23권3호
    • /
    • pp.21-26
    • /
    • 2014
  • 유럽 원전 시장 개척을 위해 개발 중인 EU-APR1400은 중대사고 대처설비로 노외 노심용융물 보유 및 냉각을 위한 소위 Core catcher라 불리는 노외 노심용융물 냉각설비를 개발 중이며, Core catcher body를 노심용융물로부터 보호하기 위하여 노심용융물의 물성 및 상태를 변화시켜 냉각 및 보유에 유리하게 하는 희생물질을 설치한다. 중대사고 시 원자로 압력용기의 틈으로부터 노심용융물이 분출되어 희생물질에 충돌 시 열 전달량이 매우 증가하게 되므로, 이 때 노심용융물 제트의 충돌에 의한 희생물질의 침식율을 정확하게 예측하는 것은 매우 중요하다. 이 논문에서는 경계층 이론을 기반으로 한 희생물질 침식 모형을 제안하고 KAERI에서 수행한 실험결과와 비교하였다.

국내 연약지반의 신뢰성있는 비배수 전단강도 추정을 위한 flat DMT와 인공신경망 이론의 적용 (Application of Flat DMT and ANN for Reliable Estimation of Undrained Shear Strength of Korean Soft Clay)

  • 변위용;김영상;이승래;정은택
    • 한국지반공학회논문집
    • /
    • 제20권5호
    • /
    • pp.17-25
    • /
    • 2004
  • DMT 시험은 연약지반의 공학적 특성을 파악하기 위한 현장 시험방법으로, 이 방법으로부터 구한 비배수 전단강도는 가장 신뢰성 있고 유용한 매개변수로 알려져 있다. 그러나 국외 다른 지역의 자료를 토대로 기존에 제안된 상관관계식들은 지역적인 특성에 의존한다. DMT 시험 결과는 3가지 중간 지수 - 재료지수, 수평응력지수, dilatometer modulus를 사용하여 해석이 이루어지며 특히 비배수 전단강도는 수평응력지수만을 이용하여 예측하고 있다. 본 논문에서는 먼저 DMT 시험의 국내 연약지반에서의 적용성을 살펴보았으며 DMT로부터 비배수 전단강도를 추정하기 위하여 $p_0, p_1, p_2, {\sigma '}_v$ 그리고 초기 간극수압을 바탕으로 인공신경망 모델을 개발하였다. 인공신경망 모델은 오차 역전파 알고리즘을 적용하였으며 국내 연약지반에서 수행된 DMT 시험 자료를 이용하여 훈련하였다. 인공신경망 모델의 적용성을 판단하기 위하여 훈련에 이용되지 않은 자료로부터 예측된 결과와 기존에 제안된 상관관계식으로부터 얻은 결과를 서로 비교하였다.

수조로 방출되는 기포 거동에 대한 수치해석 (Numerical Simulation on the Behavior of Air Cloud Discharging into a Water Pool)

  • 김환열;김영인;배윤영;송진호;김희동
    • 에너지공학
    • /
    • 제11권3호
    • /
    • pp.237-246
    • /
    • 2002
  • 한국형차세대원자로 APR-1400의 안전감압계통이 작동하면 물, 공기 및 증기가 sparger를 통해 격납건물 내 핵연료재장전 수조로 차례로 방출된다. 방출 과정 중 생기는 여러 현상 중에서 수조 내의 공기 기포군은 저주파, 고진폭의 진동 하중을 발생하며, 주파수가 침수 구조물의 고유 주파수와 거의 같은 경우에는 구조물에 심각한 영향을 줄 수 있다. 이러한 현상은 복잡하기 때문에 주파수와 하중에 대한 규명은 주로 실험에 의존해 왔으며 수치해석적 연구는 이루어지지 않았다. 본 연구에서는 sparger를 통해 수조 내로 방출되는 공기 기포군의 거동에 대한 수치해석을 상용 열수력 해석 코드인 FLUENT Version 4.5를 사용하여 수행하였다. 다상유동 해석모델중 VOF(Volume Of Fluid)모델을 사용하여 물, 공기 및 증기 등의 다상유동을 모의하였다. 해석결과를 sparger 개발을 위해 ABB-Atom이 수행하였던 실험결과와 비교하여 만족할만한 결과를 얻었다.

질소, 산소, 아르곤에 대한 상태방정식의 신뢰도 (A Reliability of Equation of State for Nitrogen, Oxygen and Argon)

  • 용평순;문흥만;손무룡;이성철
    • 한국가스학회지
    • /
    • 제1권1호
    • /
    • pp.41-48
    • /
    • 1997
  • 가스물성의 계산방법으로 상태방정식이 널리 사용되고 있으나 상태방정식의 종류에 따라서 물성예측에 서로 다른 차이를 보이고 있다. 본 연구는 가스의 액화온도에서 상온에 이르는 온도범위와 1bar에서 30bar에 이르는 압력범위에서 질소, 산소, 아르곤에 대한 상태방정식의 물성계산 신뢰도를 검토하고자 하였다. 이를 위하여 Aspen plus에서 제공하는 Soave-Redlich-Kwong, Peng-Robinson, BWR-Lee Staring 상태방정식을 비교대상으로 하였고 계산결과는 문헌치 및 virial식과 비교하였다. 또한 물성계산식이 공정에 미치는 영향을 고찰하기 위하여 초저온 공기분리장치의 증류탑 및 팽창터어빈 계산을 수행하여 상태방정식 차이에 의한 공정계산 차이를 비교, 분석하였다.

  • PDF

Predicting the Frequency of Combustion Instability Using the Measured Reflection Coefficient through Acoustic Excitation

  • Bae, Jinhyun;Yoon, Jisu;Joo, Seongpil;Kim, Jeoungjin;Jeong, Chanyeong;Sohn, Chae Hoon;Borovik, Igor N.;Yoon, Youngbin
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권4호
    • /
    • pp.797-806
    • /
    • 2017
  • In this study, the reflection coefficient (RC) and the flame transfer function (FTF) were measured by applying acoustic excitation to a duct-type model combustor and were used to predict the frequency of the combustion instability (CI). The RC is a value that varies with the excitation frequency and the geometry of the combustor as well as other factors. Therefore, in this study, an experimentally measured RC was used to improve the accuracy of prediction in the cases of 25% and 75% hydrogen in a mixture of hydrogen and methane as a fuel. When the measured RCs were used, an unstable condition was correctly predicted, which had not been predicted when the RCs had been assumed to be a certain value. The reason why the CI occurred at a specific frequency was also examined by comparing the peak of the FTF with the resonance frequency, which was calculated using Helmholtz's resonator analysis and a resonance frequency equation. As the CI occurred owing to the interaction between the perturbation in the rate of heat release and that in the pressure, the CI was frequent when the peak of the FTF was close to the resonance frequency such that constructive interference could occur.

Geomechanical and thermal reservoir simulation during steam flooding

  • Taghizadeh, Roohollah;Goshtasbi, Kamran;Manshad, Abbas Khaksar;Ahangari, Kaveh
    • Structural Engineering and Mechanics
    • /
    • 제66권4호
    • /
    • pp.505-513
    • /
    • 2018
  • Steam flooding is widely used in heavy oil reservoir with coupling effects among the formation temperature change, fluid flow and solid deformation. The effective stress, porosity and permeability in this process can be affected by the multi-physical coupling of thermal, hydraulic and mechanical processes (THM), resulting in a complex interaction of geomechanical effects and multiphase flow in the porous media. Quantification of the state of deformation and stress in the reservoir is therefore essential for the correct prediction of reservoir efficiency and productivity. This paper presents a coupled fluid flow, thermal and geomechanical model employing a program (MATLAB interface code), which was developed to couple conventional reservoir (ECLIPSE) and geomechanical (ABAQUS) simulators for coupled THM processes in multiphase reservoir modeling. In each simulation cycle, time dependent reservoir pressure and temperature fields obtained from three dimensional compositional reservoir models were transferred into finite element reservoir geomechanical models in ABAQUS as multi-phase flow in deforming reservoirs cannot be performed within ABAQUS and new porosity and permeability are obtained using volumetric strains for the next analysis step. Finally, the proposed approach is illustrated on a complex coupled problem related to steam flooding in an oil reservoir. The reservoir coupled study showed that permeability and porosity increase during the injection scenario and increasing rate around injection wells exceed those of other similar comparable cases. Also, during injection, the uplift occurred very fast just above the injection wells resulting in plastic deformation.

8800TEU급 컨테이너선 프로펠러 추진효율 및 캐비테이션 성능향상 연구 (Performance Improvement Study of Propeller Propulsion Efficiency and Cavitation for the 8800TEU Class Container)

  • 안종우;김건도;김기섭;박영하;안해성;정영준;윤지현
    • 대한조선학회논문집
    • /
    • 제54권6호
    • /
    • pp.453-460
    • /
    • 2017
  • In order to investigate propulsion efficiency and cavitation characteristics for expanded area ratio variation of the 8800TEU class container propeller, a series of performance tests were conducted at Large Cavitation Tunnel (LCT) and Towing Tank (TT) in KRISO. The cavitation test of the existing propellers (KP1029 & KP1030) was conducted using FRP model ship in LCT. On the basis of LCT test results, it was required to design propeller with better propulsion efficiency and cavitation performance. Two propellers (KP1171 & KP1172) with decreased expanded area ratio were designed on the basis of KP1029 propeller. The new design propellers showed higher efficiency than KP1029 and reasonable cavitation performance. In the future, they will be applied as the standard propeller for the propeller design of the large container ship. Through the performance test and prediction results for the new design propellers, it is thought that high-load propeller with better propulsion efficiency and cavitation performance will be developed constantly.

국내 연약지반의 신뢰성있는 비배수 전단강도 추정을 위한 flat DMT와 인공신경망 이론의 적용 (Application of flat DMT and ANN for reliable estimation of undrained shear strength of Korean soft clay)

  • 변위용;김영상;이승래;정은택
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.154-161
    • /
    • 2004
  • The flat dilatometer test(DMT) is a geotechnical tool to estimate in-situ properties of various types of ground materials. The undrained shear strength is known to be the most reliable and useful parameter obtained by DMT. However, the existing relationships which were established for other local deposits depend on the regional geotechnical characteristics. In addition, the flat dilatometer test results have been interpreted using three intermediate indicesmaterial index($I_p$), horizontal stres index($K_p$), and dilatometer modulus($E_p$) and the undrained shear strength is estimated only by using the horizontal stress index($K_D$). In this paper, an artificial neural network was developed to evaluate the undrained shear strength by DMT and the ANN, based on the $p_0,\;p_1,\;p_2,\;{\sigma}'_v_0$, and porewater pressure. The ANN which adopts the back-propagation algorithm was trained based on the DMT data obtained from Korean soft clay. To investigate the feasibility of ANN model, the prediction results obtained from data which were not used to train the ANN and those obtained from existing relationships were compared.

  • PDF

Prediction of the Toxicity of Dimethylformamide, Methyl Ethyl Ketone, and Toluene Mixtures by QSAR Modeling

  • Kim, Ki-Woong;Won, Yong Lim;Hong, Mun Ki;Jo, Jihoon;Lee, Sung Kwang
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권12호
    • /
    • pp.3637-3641
    • /
    • 2014
  • In this study, we analyzed the toxicity of mixtures of dimethylformamide (DMF) and methyl ethyl ketone (MEK) or DMF and toluene (TOL) and predicted their toxicity using quantitative structure-activity relationships (QSAR). A QSAR model for single substances and mixtures was analyzed using multiple linear regression (MLR) by taking into account the statistical parameters between the observed and predicted $EC_{50}$. After preprocessing, the best subsets of descriptors in the learning methods were determined using a 5-fold cross-validation method. Significant differences in physico-chemical properties such as boiling point (BP), specific gravity (SG), Reid vapor pressure (rVP), flash point (FP), low explosion limit (LEL), and octanol/water partition coefficient (Pow) were observed between the single substances and the mixtures. The $EC_{50}$ of the mixture of DMF and TOL was significantly lower than that of DMF. The mixture toxicity was directly related to the mixing ratio of TOL and MEK (MLR $EC_{50}$ equation = $1.76997-1.12249{\times}TOL+1.21045{\times}MEK$), as well as to SG, VP, and LEL (MLR equation $EC_{50}=15.44388-19.84549{\times}SG+0.05091{\times}VP+1.85846{\times}LEL$). These results show that QSAR-based models can be used to quantitatively predict the toxicity of mixtures used in manufacturing industries.

Assessment of the unconfined compression strength of unsaturated lateritic soil using the UPV

  • Wang, Chien-Chih;Lin, Horn-Da;Li, An-Jui;Ting, Kai-En
    • Geomechanics and Engineering
    • /
    • 제23권4호
    • /
    • pp.339-349
    • /
    • 2020
  • This study investigates the feasibility of using the results of the UPV (ultrasonic pulse velocity) test to assess the UCS (unconfined compressive strength) of unsaturated soil. A series of laboratory tests was conducted on samples of unsaturated lateritic soils of northern Taiwan. Specifically, the unconfined compressive test was combined with the pressure plate test to obtain the unconfined compressive strength and its matric suction (s) of the samples. Soil samples were first compacted at the designated water content and subsequently subjected to the wetting process for saturation and the following drying process to its target suction using the apparatus developed by the authors. The correlations among the UCS, s and UPV were studied. The test results show that both the UCS and UPV significantly increased with the matric suction regardless of the initial compaction condition, but neither the UCS nor UPV obviously varied when the matric suction was less than the air-entry value. In addition, the UCS approximately linearly increased with increasing UPV. According to the investigation of the test results, simplified methods to estimate the UCS using the UPV or matric suction were established. Furthermore, an empirical formula of the matric suction calculated from the UPV was proposed. From the comparison between the predicted values and the test results, the MAPE values of UCS were 4.52-9.98% and were less than 10%, and the MAPE value of matric suction was 17.3% and in the range of 10-20%. Thus, the established formulas have good forecasting accuracy and may be applied to the stability analysis of the unsaturated soil slope. However, further study is warranted for validation.