• Title/Summary/Keyword: Pressure Loss Coefficient

Search Result 257, Processing Time 0.029 seconds

Design and Performance Analysis of a Fuel Transfer Jet Pump in the Smart UAV Fuel Supply System (스마트무인기연료공급시스템 연료이송 제트펌프의 설계 및 성능해석에 관한 연구)

  • Park, Sul-Hye;Lee, Yoon-Kwon;Lee, Jee-Keun;Lee, Chang-Ho;Lee, Soo-Chul;Choi, Hee-Joo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.11
    • /
    • pp.1013-1021
    • /
    • 2007
  • Design and performance analysis of the jet pump to transfer fuel between tanks in the smart UAV fuel supply system were carried out through one dimensional flow analysis and the flow analysis using a commercial CFD code. From the analysis results, it was proved that the jet pump was designed with the flow ratio of 2.23 that is the fundamental requirement of the jet pump design. The comparison results showed that the primary nozzle pressure is higher in the CFD analysis than in one dimensional flow analysis, mainly due to the underestimated loss coefficient of the primary nozzles. Consequently, the loss coefficients of the jet pump components should be determined more precisely for the design of the jet pumps with high performance.

Tuned liquid column dampers with adaptive tuning capacity for structural vibration control

  • Shum, K.M.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.5
    • /
    • pp.543-558
    • /
    • 2005
  • The natural frequencies of a long span bridge vary during its construction and it is thus difficult to apply traditional tuned liquid column dampers (TLCD) with a fixed configuration to reduce bridge vibration. The restriction of TLCD imposed by frequency tuning requirement also make it difficult to be applied to structure with either very low or high natural frequency. A semi-active tuned liquid column damper (SATLCD), whose natural frequency can be altered by active control of liquid column pressure, is studied in this paper. The principle of SATLCD with adaptive tuning capacity is first introduced. The analytical models are then developed for lateral vibration of a structure with SATLCD and torsional vibration of a structure with SATLCD, respectively, under either harmonic or white noise excitation. The non-linear damping property of SATLCD is linearized by an equivalent linearization technique. Extensive parametric studies are finally carried out in the frequency domain to find the beneficial parameters by which the maximum vibration reduction can be achieved. The key parameters investigated include the distance from the centre line of SATLCD to the rotational axis of a structure, the ratio of horizontal length to the total length of liquid column, head loss coefficient, and frequency offset ratio. The investigations demonstrate that SATLCD can provide a greater flexibility for its application in practice and achieve a high degree of vibration reduction. The sensitivity of SATLCD to the frequency offset between the damper and structure can be improved by adapting its frequency precisely to the measured structural frequency.

Experimental Study on the Flame Spread Characteristics under Reduced Atmospheric Pressures and Elevated Oxygen Concentrations (저기압 고산소 환경에서 화염 전파특성에 관한 실험적 연구)

  • Yang, Ho-Dong;Kwon, Hang-June;Park, Seul-Hyun
    • Fire Science and Engineering
    • /
    • v.30 no.6
    • /
    • pp.78-83
    • /
    • 2016
  • The characteristics of flame spread under similar atmospheric conditions to those inside the first stage of launch vehicles were investigated to provide fundamental knowledge to prevent fires and explosions of vehicles during launching operations. To this end, the rate of flame spread on the solid fuel was measured at elevated oxygen concentrations and reduced atmospheric pressures. A 0.18 mm diameter optical fiber was used as a solid fuel. The experimental results indicated that elevated oxygen concentrations can increase the rate of flame spread while increasing the atmospheric pressures to 1 atm can lead to decreases in the rate of flame spread. The increases in the rate of flame spread with pressure is due mainly to reductions in the convective heat loss that are clarified through an analysis of the pressure dependence on the convective heat transfer coefficient.

Numerical Study on Flow and Heat Transfer Characteristics of Pipes with Various Shapes (파이프 형상에 따른 내부 열유동 특성과 성능에 관한 수치해석적 연구)

  • Park, Sang Hyeop;Kim, Sang Keun;Ha, Man Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.11
    • /
    • pp.999-1007
    • /
    • 2013
  • The present work reports numerical results of the pressure drop and heat transfer characteristics of pipes with various shapes such as circular, elliptical, circumferential wavy and twisted using a three-dimensional simulation. Numerical simulations are calculated for laminar to turbulent flows. The fully developed flow in pipes was modeled using steady incompressible Reynolds-averaged Navier-Stokes (RANS) equations. The friction and Colburn factor of each pipe are compared with those of a circular tube. The overall flow and heat transfer calculations are evaluated by the volume and area goodness factor. Finally, the objective of the investigation is to find a pipe shape that decreases the pressure loss and increases the heat transfer coefficient.

Evaluation of Flow Characteristics in Water Supply Pipes Shielding Electromagnetic Pulse of 100 dB with Concentric and Eccentric Reducers (Concentric Reducer와 Eccentric Reducer를 사용한 EMP 차폐 100dB급 급수관의 유동특성 평가)

  • Pang, Seung-Ki;Ahn, Hye-Rin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.13 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • In this paper, the flow characteristics of water in the water supply pipes of a WBC array were evaluated. We simulated the flow velocities and pressures for a standard pipe, an expansion pipe with a concentric reducer, and an expansion pipe with an eccentric reducer using computational fluid dynamics. In the case of the standard pipe, when the inlet flow velocities were 0.5 m/s and 2.0 m/s, the maximum flow velocities at the center of the WBC array were 0.54 m/s and 2.74 m/s, respectively, which were the greatest values among those of all the pipe models considered. In the case of the expansion pipe, the maximum flow velocities at the center of the WBC array were almost the same under the same conditions regardless of the type of reducer. The pressure losses in the pipe due to the concentric and eccentric reducers were found to be (165.09 ${\times}$ inlet $velocity^{1.6677}$) and (210.98 ${\times}$ inlet $velocity^{1.6478}$), respectively. The coefficient of determination at this time was greater than 0.99 and was the same for both the models. As a simulation result, it was found that in order to reduce the pressure loss when pipe with WBC array is connected with a conventional pipe, diameter of the pipe with WBC array at that section should be enlarged by one step, and then connected to the conventional pipe with a concentric reducer.

Heat Transfer between Substrate and Substrate-heater in Low Vacuum (저진공 내 시료가열판과 시료의 열전달)

  • Park, Hyon-Jae;Oh, Soo-Ghee;Shin, Yong-Hyeon;Chung, Kwang-Hwa
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.4
    • /
    • pp.302-310
    • /
    • 2008
  • Heat transfer between substrate and substrate-heater in low vacuum was investigated. The convection related with gas flow and pressure, the heat conduction considering surface roughness and contact pressure, and the heat loss by radiation depending on the surface emissivity were considered. The coefficient of heat conduction $h_c$ in the Fourier's law were determined experimentally from the temperature difference between the substrate and the substrate-heater in the range of substrate-heater temperature $100\;-\;500^{\circ}C$, in the pressures of 300 mTorr - 1 Torr. The temperature difference was then calculated in the reverse way for the purpose of verification, using the heat flow and the experimentally determined coefficients. The verified temperature differences were thus obtained within 0.33 % error.

Development and Verification of Analytical Model of a Pilot Operated Flow Control Valve for 21-ton Electric Excavator (21톤급 전기 굴삭기용 파일럿 작동식 유량제어 밸브의 해석모델 개발 및 검증)

  • Kim, D.M.;Nam, Y.Y.;Seo, J.H.;Jang, J.S.
    • Journal of Drive and Control
    • /
    • v.12 no.3
    • /
    • pp.52-59
    • /
    • 2015
  • An electro hydraulic poppet valve (EHPV) and a variable orifice poppet are assembled in a single block, which is referred to as a RHINO but is also generally called a pilot-operated flow control valve. In this study, we analyzed the structure and the operating principle for a RHINO applied in a 21-ton electric excavator system. The RHINO was experimentally tested to measure the dynamic responses and the pressure energy loss. In this test, we investigated the variation in the conductance coefficient according to the increase in the supply pressure under a constant current and a variation in the flow rate according to the increase in the current. Then, the geometrical shapes and the spring stiffness of the RHINO were considered to develop an analysis model. The characteristics (current-force and hysteresis) for the solenoid based on the experimental data were reflected in the analysis model that was developed, and the reliability of the analysis model was also verified by comparing the experimental and analytical results. The developed model is thus considered to be reliable for use in a wide range of applications, including optimum design, sensitivity analysis, parameter tuning, etc.

A Study on Flame Propagation Through a Mixture of H2/Air and Inert Particles with Radiation Effect (복사효과를 고려한 수소/공기/불활성입자 혼합물에서의 화염전파에 대한 연구)

  • Kim, Deok Yeon;Son, Jin Wook;Baek, Seung Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.1040-1047
    • /
    • 1999
  • The characteristics of flame propagation in inert particle-laden $H_2$/Air premixed gas are numerically investigated on this study. The 2nd order TVD scheme is applied to numerical analysis of governing equations and multi-step chemical reaction model and detailed transport properties are sued to solve chemical reaction terms. Radiation heat transfer is computed by applying the finite volume method to a radiative transfer equation. The burning velocities against the mole fractions of hydrogen agree well with results performed by different workers. The inert particles play significant roles in the flame propagation on account of momentum and heat transfer between gas and particles. Gas temperature, pressure and flame propagation speed are decreased as the loading ratio of particle is increased. Also the products behind flame zone contain lots of water vapor whose absorption coefficient is much larger than that of unburned gas. Thus, the radiation effect of gas and particles must be considered simultaneously for the flame propagation in a mixture of $H_2$/Air and inert particles. As a result, it is founded that because the water vapor emits much radiation and this emitted radiation is released at boundaries as radiant heat loss as well as reabsorbed by gas and particles, flame propagation speed and flame structure are altered with radiation effect.

Respiratory air Flow Transducer Based on air Turbulence (와류 현상을 이용하는 호흡기류센서)

  • Kim, Kyung-Ah;Lee, In-Kwang;Park, Jun-Oh;Lee, Su-Ok;Shin, Eun-Young;Kim, Yoon-Kee;Kim, Kyung-Chun;Cha, Eun-Jong
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.5
    • /
    • pp.393-400
    • /
    • 2009
  • The present study developed a new technique with no physical object on the flow stream but enabling the air flow measurement and easily incorporated with the devices for cardiopulmonary resuscitation(CPR) procedure. A turbulence chamber was formed in the middle of the respiratory tube by locally enlarging the cross-sectional area where the flow related turbulence was generated inducing energy loss which was in turn converted into pressure difference. The turbulence chamber was simply an empty enlarged air space, thus no physical object existed on the flow stream, but still the flow rate could be evaluated. Computer simulation demonstrated stable turbulence formation big enough to measure. Experiment was followed on the proto-type transducer, the results of which were within ${\pm}5%$ error compared to the simulation data. Both inspiratory and expiratory flows were obtained with symmetric measurement characteristics. Quadratic curve fitting provided excellent calibration formula with a correlation coefficient>0.999(P<0.0001) and the mean relative error<1%. The present results can be usefully applied to accurately monitor the air flow rate during CPR.

The Effect of refrigerant pass & distribution in aluminum parallel flow heat exchanger (알루미늄 평행류 열교환기에서 냉매패스와 분배량 변화의 영향)

  • Kim, Jeong-Sik;Kim, Nae-Hyun;Kim, Kwang-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3546-3552
    • /
    • 2009
  • In this study, an analysis code was created for a 190*650*25-mm (W*H*D) parallel-flow evaporator, and research was done on how to increase the heat transfer rate of aluminum PF heat exchanger for application in IDU. After varying the R410A refrigerant up-down flow to two and three passes and the distribution ratio to 1:1:1 and 1:2:2, it was determined that the two-pass flow has a 30% higher partial heat transfer rate and a 25% lower heat transfer coefficient compared to the three-pass flow. As for the distribution ratios of the three-pass flow, 1:1:1 was found to have a lower refrigerant pressure loss than 1:2:2 distribution. It was assumed, though, that the refrigerant distribution had a uniform flow and that its value was thus overestimated in the actual case of maldistribution in each pass.