• 제목/요약/키워드: Pressure Hole

검색결과 756건 처리시간 0.026초

Hole-Tone의 발생과 원형제트의 불안정 특성 (Instability Characteristics of Circular Jets Producing Hole-Tones)

  • 임정빈;권영필
    • 소음진동
    • /
    • 제9권5호
    • /
    • pp.1005-1011
    • /
    • 1999
  • Generation of hole-tones and the instability of circular impinging jets are investigated based on the frequency characteristics and the radiated sound field. The experiment is carried out with varying hole sizes, jet speeds and impinging distances. It is found that hole-tones occur by both the low-speed laminar jet and the high-speed turbulent jet, but not by the transient jet, while plate-tones without holes are produced only in the high-speed turbulent impinging jet. When the diameter ratio of the hole to the nozzle is nearly one, hole-tones occur most easily. At low speed, it is found that hole-tones are due to the symmetrical unstable jet and the impinging distance decreases with jet speed. And the Strouhal number and the sound pressure level increase with jet speed. At high speed, hole-tones show the same characteristics as plate-tones. It is found that the ratio of the convection speed varies with the Strouhal number and the jet speed.

  • PDF

사각덕트 내 이단 오리피스를 지나는 유동의 압력강하에 대한 수치해석 (A Numerical analysis on the pressure drop of the flow field past a two-staged orifice in a rectangular duct)

  • 송우열;김유곤
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2747-2752
    • /
    • 2007
  • A numerical study has been performed on the flow past a two-staged orifice in a rectangular duct. The flow field including the recirculation region behind the orifice was investigated and the pressure drop was calculated. Water was used as a working fluid and the flow was treated as the turbulent flow, of which the Raynolds number was 6000. The main parameters for the pressure drop and the recirculation region were the orifice's inclined angle against the duct, the interval between two orifices, the shape of the orifice's hole having the same area, and the change of the hole position at the same interval. The variation of the flow field was investigated with each parameter. Consequently, it was found that the most dominant parameter influencing the drop of the pressure was the change of the hole position at the same interval between orifices. Especially when the interval between orifices was narrow and the relative position the holes was changed, its effect to the flow field was shown most drastically as a result of this study. The SIMPLER algorithm with FLUENT code was employed to analyze the flow field.

  • PDF

거리에 따른 수직 충돌 제트의 표면 평균압 측정 (Measurement of the Average Surface Pressure by a Vertical Impinging Jet for the Different Distances)

  • 정우원;이계한;장안식;박경열;전경진
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.181-182
    • /
    • 2006
  • When a water jet is injected on the body surface, the pressure and shear stress on the surface are important physical parameters in determining the body surface wash out and physical stimulus. We used the force plate in order to measure the surface average pressure for different nozzle types and distances between a nozzle and a plate. We used the nozzles with a hole dimeter of 1.8, 2.9, 3.2mm, and the shower heads with 10 holes (hole diameter, 1mm) and 20 holes (hole diameter, 1mm). The distances between a nozzle and a plate was 10, 20, 30, 40cm. The results showed that the surface forces were not affected by the distances between a nozzle and a plate. Further numerical studies will be performed to predict wall shear stress based on the measured pressure data.

  • PDF

부실식 정적연소실내 층상혼합기의 연소특성(II) (Combustion Characteristics of Stratified Mixture in a Constant Volume Combustion Chamber with Sub-chamber (II))

  • 김봉석;권철홍;류정인
    • 한국자동차공학회논문집
    • /
    • 제3권5호
    • /
    • pp.122-134
    • /
    • 1995
  • The present study was investigated combustion characteristics of methane-air mixtures at stratified charge in a constant volume combustion chamber. The main results obtained from this study can be summarized as follows. In case of ${\phi}_s=1.0$, total burning times greatly affected rather than initial time of pressure increase and maximum combustion pressure. In case of ${\phi}_t=1.0$, initial time of pressure increase and total burning times were affected considerably in comparison with the case of ${\phi}_s=1.0$. Also, even the very lean mixture which total equivalence ratio is ${\phi}_t=0.69$(${\phi}_s=1.0$, ${\phi}_m=0.65$), by changing configuration of the critical passage-hole and using a stratified mixture, it is possible to decrease substantially the initial time of pressure increase. total burning times and NOx concentration without deteriorating combustion characteristics such as maximum combustion pressure, rate of heat release etc. in comparison with the use of single chamber(in case of ${\phi}=1.0$) only. Specifically, our trends were revealed remarkably in the case of Type D which is reduced a flame contact area of sub-chamber side of the passage-hole.

  • PDF

Hydro-mechanical hole punching 공정의 유한요소 해석 (FE Analysis for hydro-mechanical Hole Punching Process)

  • 윤종헌;김승수;박훈재;최태훈;이혜진;허훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.159-162
    • /
    • 2005
  • The milli-components for electronic and medical device etc. have been manufactured by conventional process. Forming and machining process for those milli-components need tremendous cost and time because products require higher dimensional accuracy than the conventional ones. For instance, conventional mechanical punching process has many drawbacks for applying to high accuracy products. The final radius of hole can be varied and burr which interrupting another procedure is generated. Hydro-mechanical punching process makes possible to reduce amount of burr and obtain the fine shearing surface using the operating fluid. Hydrostatic pressure retards occurrence of initial crack and induces to locate the fracture surface in the middle of sheet to thickness direction. In this paper, Hydro-mechanical punching process is analyzed using finite element method and the effect of hydrostatic pressure is evaluated during punching process. The prediction of fracture is performed adopting the various ductile fracture criteria such as Cockcroft, Brozzo and Oyane's criterion using a user subroutine in ABAQUS explicit.

  • PDF

분사 조건이 다공형 GDI 인젝터의 분무 거동에 미치는 영향 (Effect of Injection Conditions on the Spray Behaviors of the Multi-hole GDI Injector)

  • 박정환;박수한;이창식;박성욱
    • 한국자동차공학회논문집
    • /
    • 제20권2호
    • /
    • pp.116-122
    • /
    • 2012
  • The purpose of this study is to investigate the overall spray behavior characteristics for various injection conditions in a gasoline direct injection(GDI) injector with multi-hole. The spray characteristics, such as the spray penetration, the spray angle, and the injection quantity, were studied through the change of the injection pressure, the ambient pressure, and the energizing duration in a high-pressure chamber with a constant volume. The n-heptane with 99.5% purity was used as the test fuel. In a constant volume chamber, the injected spray was visualized by the spray visualization system, which consisted of the high-speed camera, the metal-halide lamp, the injector control device, and the image analysis system with the image processing program. It was revealed that the injection quantity was mainly affected by the difference between the injection pressure and the ambient pressure. For low injection pressure conditions, the injection quantity was decreased by the increase of the ambient pressure, while it nearly maintained regardless of the ambient pressure at high injection pressure. According to the increase of the ambient pressure in the constant volume chamber, the spray development became slow, consequently, the spray tip penetration decreased, and the spray area increased. In additions, the circular cone area decreased, and the vortex area increased.

연소실내의 압력 변동에 따른 연료 분사구에서의 당량비 변동에 관한 수치해석 (Numerical Simulation on Equivalence Ratio Fluctuation at the Fuel Injection Hole with respect to Pressure Fluctuation in a Combustion Chamber)

  • 김현준;홍정구;신현동
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제33회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.27-35
    • /
    • 2006
  • It has been observed in experiments that combustion instability of low frequency (${\sim}$ 10Hz) results form the modulation of equivalence ratio at fuel injection hole when a pressure fluctuation propagates upwards along the channel of the burner under an unchoked fuel flow condition. In this study, a commercial program was used to determine how the fuel flow rate changed with respect to the pressure, velocity of the fuel flow and the mass fraction in a choked and an unchoked condition. The calculation focus on the upstream of the dump plane to know how the forced pressure with the fuel injection conditions affects the modulation of the equivalence ratio. Therefore, it is found that pressure fluctuation leads to oscillation of mass flow rate and then results in equivalence ratio modulation under the unchoked fuel flow condition.

  • PDF

페로브스카이트 반도체 물질에 원형 패턴을 형성하기 위한 상압플라즈마 식각 기술 (Atmospheric Pressure Plasma Etching Technology for Forming Circular Holes in Perovskite Semiconductor Materials)

  • 김무진
    • 융합정보논문지
    • /
    • 제11권2호
    • /
    • pp.10-15
    • /
    • 2021
  • 본 논문에서는 먼저 습식 코팅 방법으로 페로브스카이트 (CH3NH3PbI3) 박막을 글라스 상에 형성하고, 다양한 분석 기법을 이용하여 막의 두께, 표면거칠기, 결정성, 구성성분 및 가시광 영역에서의 이 물질의 반응에 대해 논한다. 완성된 반도체 물질은 막내부에 결함(defect)이 없고 균일하며, 표면거칠기는 매우 작으며, 가시광영역에서 높은 흡수율이 관찰되었다. 다음으로 이와 같이 형성된 유무기 층에 hole 형상을 구현하기 위하여, 구멍이 일정한 간격으로 있는 메탈마스크, 페로브스카이트 물질이 코팅되어 있는 유리, 자석 순서로 되어있는 구조의 샘플을 상압플라즈마 공법을 이용하여 시간에 따른 물질에 형성되는 hole 형태의 변화를 분석하였다. 시간이 길어짐에 따라 더 많이 식각되는 것을 알 수 있으며, 이 중에서 공정 시간을 가장 오래한 샘플에 대해서는 보다 자세하게 살펴보았고, 플라즈마의 위치에 따른 차이에 의해 7영역으로 분류할 수 있었다.

고위력 폭약의 석회암 내 장약공 폭발에 의한 지반진동 전파특성에 관한 연구 (Propagation Characteristics of Ground Vibration Caused by Blast Hole Explosion of High Explosives in Limestone)

  • 김경규;신찬휘;김한림;양주석;배상호;윤경재;조상호
    • 화약ㆍ발파
    • /
    • 제41권4호
    • /
    • pp.17-28
    • /
    • 2023
  • 최근 연구시설 및 자원개발 등의 목적으로 지하공간 활용이 증가하고 있으며, 저심도 암반을 넘어 고심도 암반에 대한 개발이 증가하고 있다. 고심도 지하공간 개발은 높은 응력과 높은 온도 조건에서의 암반의 안정성을 고려해야 한다. 고심도의 경우 암반 구조와 불연속면의 상태 등이 안정성에 영향을 미칠 뿐만 아니라 지진 및 굴착을 위한 암반발파에 의한 지반진동 전파가 지하공동의 응력변화를 발생시켜 암반의 안정성에 영향을 미치게 된다. 발파공학 측면에서 지반진동을 예측하는 방법은 실측 데이터를 바탕으로 통계학적 회귀분석을 통한 경험적 회귀모형과 수치해석적 방법이 사용되고 있다. 본 연구에서는 단일공 발파에 의한 폭발압력 전파특성과 지반진동 전파특성에 대한 경험적 회귀모형을 획득하기 위하여 실험적 방법을 통해 연구를 수행하였다.

5공과 7공 프로브를 이용한 터빈 캐스케이드의 이차유동 측정 결과 비교연구 (Comparative Study on the Secondary Flow Measurement in a Turbine Cascade Using 5-hole and 7-hole Probes)

  • 노영철;이용진;박정신;김학봉;곽재수
    • 한국유체기계학회 논문집
    • /
    • 제13권6호
    • /
    • pp.5-12
    • /
    • 2010
  • Comparative study on the flow measurement by 5-hole and 7-hole probes was conducted in a linear cascade with tip clearances of 2.3%, 3.1%, and 4.4% of the blade span. Calibration range of the 5-hole and the 7-hole probes were ${\pm}25$ and ${\pm}50$ degrees, respectively. Results show that the secondary flow and total pressure loss measured by the 5e-hole and 7-hole probes were similar at small tip clearance cases. However, at the tip clearance of 3.1% and 4.4% of the blade span cases, flow angles exceeding the calibration range of the 5-hole probe were observed. Because of the wider calibration range, larger flow angle by strong leakage vortex could be measured by the 7-hole probe.