• Title/Summary/Keyword: Pressure Equation

Search Result 2,175, Processing Time 0.027 seconds

Creep properties and damage model for salt rock under low-frequency cyclic loading

  • Wang, Jun-Bao;Liu, Xin-Rong;Liu, Xiao-Jun;Huang, Ming
    • Geomechanics and Engineering
    • /
    • v.7 no.5
    • /
    • pp.569-587
    • /
    • 2014
  • Triaxial compression creep tests were performed on salt rock samples using cyclic confining pressure with a static axial pressure. The test results show that, up to a certain time, changes in the confining pressure have little influence on creep properties of salt rock, and the axial creep curve is smooth. After this point, the axial creep curve clearly fluctuates with the confining pressure, and is approximately a straight line both when the confining pressure decreases and when it increases within one cycle period. The slope of these lines differs: it is greater when the confining pressure decreases than when it increases. In accordance with rheology model theory, axial creep equations were deduced for Maxwell and Kelvin models under cyclic loading. These were combined to establish an axial creep equation for the Burgers model. We supposed that damage evolution follows an exponential law during creep process and replaced the apparent stress in creep equation for the Burgers model with the effective stress, the axial creep damage equation for the Burgers model was obtained. The model suitability was verified using creep test results for salt rock. The fitting curves are in excellent agreement with the test curves, so the proposed model can well reflect the creep behavior of salt rock under low-frequency cyclic loading. In particular, it reflects the fluctuations in creep deformation and creep rate as the confining pressure increasing and decreasing under different cycle periods.

Development of a Statistical Methodology for Nuclear Fuel Rod Internal Pressure Calculation (통계적인 핵연료봉 내압 설계방법론 개발)

  • Kim, Kyu-Tae;Yoo, Jong-Sung;Kim, Ki-Hang;Kim, Young-Jin
    • Nuclear Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.100-107
    • /
    • 1994
  • A statistical methodology is developed for calculating the nuclear fuel pod internal pressure of Korean PWR fuel in order to reduce over-conservatism of the current KAERI deterministic methodology. The developed statistical methodology employs the response surface method and Monte Carlo calculation. The simple regression equation for the rod internal pressure is derived by taking into account the various fuel fabrication-related and fuel performance model-related parameters. The validity of the regression equation is examined by the F-test, $R^2$-method and Cp-test The internal pressure predicted by the regression equation is in good agreement with that calculated by he computer code using the KAERI deterministic methodology. The distribution of the internal pressure from the Monte Carlo calculation is found to be normal. Comparison of the 95/95 rod internal pressure predicted by the developed statistical methodology with the maximum rod internal pressure by the deterministic methodology shows that the developed statistical methodology reduces significantly over-conservatism of the deterministic methodology.

  • PDF

Optimization Study for Pressure Swing Distillation Process for the Mixture of Isobutyl-Acetate and Isobutyl-Alcohol System (Isobutyl-Acetate와 Isobutyl-Alcohol 이성분계의 압력변환증류 공정 최적화 연구)

  • Cho, Sung Jin;Shin, Jae Sun;Choi, Suk Hoon;Lee, Euy Soo;Park, Sang Jin
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.307-313
    • /
    • 2014
  • In this study, an optimization process design has been performed to separate 99.9 mol% of Isobutyl Acetate from binary azeotropic mixture of Isobutyl Acetate and Isobutyl Alcohol system using a Pressure Swing Distillation (PSD). PSD is used to separate binary azeotropic mixtures using the difference between the relative volatilities and azeotropic compositions by changing the system pressure. Non-Random Two Liquid (NRTL) model for liquid phase and the Peng-Robinson equation for vapor phase are used. An optimization study for the reflux ratio and feed stage locations which minimize the total reboiler heat duties are studied. Since PSD process consists of two columns, i.e. high pressure and low pressure, the effect of column sequence on the optimum conditions is reported.

Analysis of Herringbone Grooved Journal Bearing Using Generalized Coordinate Transformation (일반좌표계 변환을 이용한 헤링본 그루브 베어링의 해석)

  • 박상신;한동철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.317-324
    • /
    • 1999
  • The present work is an attempt to calculate the steady state pressure and perturbed pressure of herringbone grooved journal bearings. A generalized coordinate system is introduced to handle the complex bearing geometry. The coordinates are fitted to the groove boundary and the Reynold's equation is transformed to be fitted to this coordinates system using the Gauss divergence theorem. This method makes it possible to deal with an arbitrary configuration of a lubricated surface. The characteristics of finite herringbone grooved journal are well calculated using this method.

  • PDF

Analysis of Herringbone Grooved Journal Bearing Using Generalized Coordinate Transformation (일반좌표계 변환을 이용한 헤링본 그루브 베어링의 해석)

  • 박상신;김영진;유송민
    • Tribology and Lubricants
    • /
    • v.16 no.6
    • /
    • pp.432-439
    • /
    • 2000
  • The present work is an attempt to calculate the steady state pressure and perturbed pressure of herringbone grooved journal bearings. A generalized coordinate system is introduced to handle the complex bearing geometry. The coordinates are fitted to the groove boundary and the Reynold's equation is transformed to be fitted to this coordinate system using the Gauss divergence theorem. This method makes it possible to deal with an arbitrary configuration of a lubricated surface. The caharacteristics of finite herringbone groove journal bearing are well calculated using this method.

Discretization of Pressure-Poisson Equation for Solving Incompressible Navier-Stokes Equations Using Non-Staggered Grid (정규격자를 사용한 비압축성 Navier-Stokes 방정식의 수치해석을 위한 압력 Poisson 방정식의 이산화)

  • Kim Y. G.;Kim H. T.;Kim J. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.96-101
    • /
    • 1998
  • Various discretiation methods of Laplacian operator in the Pressure-Poisson equation are investigated for the solution of incompressible Navier-Stokes equations using the non-staggered grid. Laplacian operators previously proposed by other researchers are applied to a Driven-Cavity problem. The computational results are compared with those of Ghia. The results show the characteristics of the discrete Laplacian operators.

  • PDF

The Numerical Study on the Cavitation (Cavitation 현상에 관한 수치적 연구)

  • Chang Seonyong;Lee Changjin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.126-131
    • /
    • 2004
  • A numerical code for cavitation is developed based on pressure-based algorithm. The k-\varepsilon$ model (with wall function) is used for turbulence, and volume transport equation is used for cavitation model. The compressibility is not considered for the flow field is low speed.

  • PDF

Analysis of permeability in rock fracture with effective stress at deep depth

  • Lee, Hangbok;Oh, Tae-Min;Park, Chan
    • Geomechanics and Engineering
    • /
    • v.22 no.5
    • /
    • pp.375-384
    • /
    • 2020
  • In this study, the application of conventional cubic law to a deep depth condition was experimentally evaluated. Moreover, a modified equation for estimating the rock permeability at a deep depth was suggested using precise hydraulic tests and an effect analysis according to the vertical stress, pore water pressure and fracture roughness. The experimental apparatus which enabled the generation of high pore water pressure (< 10 MPa) and vertical stress (< 20 MPa) was manufactured, and the surface roughness of a cylindrical rock sample was quantitatively analyzed by means of 3D (three-dimensional) laser scanning. Experimental data of the injected pore water pressure and outflow rate obtained through the hydraulic test were applied to the cubic law equation, which was used to estimate the permeability of rock fracture. The rock permeability was estimated under various pressure (vertical stress and pore water pressure) and geometry (roughness) conditions. Finally, an empirical formula was proposed by considering nonlinear flow behavior; the formula can be applied to evaluations of changes of rock permeability levels in deep underground facility such as nuclear waste disposal repository with high vertical stress and pore water pressure levels.

Optimization of Curing Pressure for Automatic Pressure Gelation Molding Process of Ultra High Voltage Insulating Spacers (초고압 절연 스페이서의 자동가압 겔화 성형 공정을 위한 경화 보압의 최적화 )

  • Chanyong Lee;Hangoo Cho;Jaehyeong Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.56-62
    • /
    • 2024
  • By introducing curing kinetics and chemo-rheology for the epoxy resin formulation for ultra-high voltage gas insulated switchgear (GIS) Insulating Spacers, a study was conducted to simulate the curing behavior, flow and warpage analysis for optimization of the molding process in automatic pressure gelation. The curing rate equation and chemo-rheology equation were set as fixed values for various factors and other physical property values, and the APG molding process conditions were entered into the Moldflow software to perform optimization numerical simulations of the three-phase insulating spacer. Changes in curing shrinkage according to pack pressure were observed under the optimized process conditions. As a result, it was confirmed that the residence time in the solid state was shortened due to the lowest curing reaction when the curing holding pressure was 3 bar, and the occurrence of deformation due to internal residual stress was minimized.

Field studies of wind induced internal pressure in a warehouse with a dominant opening

  • Guha, T.K.;Sharma, R.N.;Richards, P.J.
    • Wind and Structures
    • /
    • v.16 no.1
    • /
    • pp.117-136
    • /
    • 2013
  • A field study of wind-induced internal pressures in a flexible and porous industrial warehouse with a single dominant opening, of various sizes for a range of moderate wind speeds and directions, is reported in this paper. Comparatively weak resonance of internal pressure for oblique windward opening situations, and hardly discernible at other wind directions, is attributed to the inherent leakage and flexibility in the envelope of the building in addition to the moderate wind speeds encountered during the tests. The measured internal pressures agree well with the theoretical predictions obtained by numerically simulating the analytical model of internal pressure for a porous and flexible building with a dominant opening. Ratios of the RMS and peak internal to opening external pressures obtained in the study are presented in a non-dimensional format along with other published full scale measurements and compared with the non-dimensional design equation proposed in recent literature.