• Title/Summary/Keyword: Pressure Drop Rate

Search Result 653, Processing Time 0.024 seconds

Effects of Flow Resonance on Heat Transfer Enhancement and Pressure Drop in a Plate Heat Exchanger (유동공진이 판형 열교환기의 열전달 향상과 압력강하에 미치는 영향)

  • Han Sang Kyu;Kang Byung Ha
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.2
    • /
    • pp.165-172
    • /
    • 2005
  • Heat transfer enhancement of three types of brazed plate heat exchangers has been evaluated experimentally. The effects of flow resonance in a plate heat exchanger on the heat transfer rate and pressure drop have been investigated in a wide range of mass flow rates in detail. The problem is of particular interest in the innovative design of a plate heat exchanger by flow resonance. The results obtained indicate that both heat transfer coefficient and pressure drop are increased as mass flow rate is increased, as expected. It is also found that the heat transfer enhancement is increased with an increase in the plate pitch, while the heat transfer is decreased with a decrease in the chevron angle. Pressure drop also increased with an increase in the plate pitch and with a decrease in the chevron angle. Heat transfer enhancement in the plate heat exchangers is maximized by flow resonance and the resonance frequency of the present plate heat exchangers is found to be in the range of $10~15\;Hz$.

Heat transfer and pressure drop characteristics of plate heat exchangers for absorption application (흡수식 시스템의 용액열교환기용 판형열교환기의 열전달 및 압력강하 특성 실험)

  • Kim, Hyun-Jun;Kim, Jung-Hwan;Kim, Sung-Soo;Jeong, Jin-Hee;Kang, Yong-Tae
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.347-352
    • /
    • 2005
  • The objectives of this paper are to study the characteristics of heat transfer and pressure drop in plate heat exchangers for absorption applications, and to quantify the effect of mass flow rate, solution concentration, and geometric conditions such as chevron angle on the heat transfer coefficient and pressure drop in the plate heat exchangers. The working fluid is $H_2O$/LiBr solution with the LiBr concentration range of 53.2 - 62.5 % in mass. The results show that the overall heat transfer coefficient increases linearly with increasing Re. The heat transfer rate increases with increasing the chevron angle while it does not significantly depend on the LiBr concentration. The pressure drop also increases with increasing the chevron angle. The effect of the chevron angle on the pressure drop is more significant than that of the concentration.

  • PDF

An Analysis of the Impact of Design Factors Using a Simulator of LH2 Storage Tank PRV System (시뮬레이터를 이용한 LH2 저장탱크 PRV시스템의 설계요소 영향분석)

  • Chungkeun Chae;Gyeongtae Im;Yonggyu Kim;Seungbeen Chae
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.2
    • /
    • pp.47-55
    • /
    • 2024
  • More than 100 liquefied hydrogen tanks are expected to be introduced in Korea by 2030. Since liquefied hydrogen is stored in a vacuum insulation structure tank at -253℃, there is a possibility of a major disaster in which the tank bursts if there is a problem with insulation. Therefore, the law stipulates that PRV should be installed as the last bastion. It is important to note that in the case of liquefied hydrogen, it becomes useless if the pressure drop of the pipe is ignored and the capacity is calculated incorrectly. In CGA S-1.3, the pressure drop rate of the PRV inlet and outlet pipes is set to less than 3% and less than 10%, respectively. However, there is an interdependence between the amount of pressure drop and the flow rate of the pipe, making it impossible to calculate these values at once. Therefore, we developed a simulator that calculates the pressure loss rate of PRV system using MATLAB/Simulink and evaluated the sensitivity of the pressure drop rate to design elements.

Prediction of Flow Rate and Drop Size of Low Viscosity Liquid Through Y-Jet Atomizers (Y-Jet노즐을 통한 저점도 액체의 유량 및 입경예측에 관한 연구)

  • 송시홍;이상용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3377-3385
    • /
    • 1994
  • This paper introduces empirical correlations to obtain the gas/liquid flow rates and the spray drop size of low viscosity liquid injected by Y-jet twin-fluid atomizers. The gas flow rate is well correlated with the gas injection pressure and the mixing point pressure, based on the compressible flow theory. Similarly, the liquid flow rate is determined by the liquid injection pressure and the mixing point pressure, and a simple correlation for the liquid discharge coefficient at the liquid port was deduced from the experimental results. The mixing point pressure, which is one of the essential parameters, was expressed in terms of the gas/liquid flow rate ratio and the mixing port length. Disintegration and atomization mechanisms both within the mixing port and outside the atomizer were carefully re-examined, and a "basic" correlation form representing the mean diameter of drops was proposed. The "basic" correlation was expressed in terms of the mean gas density within the mixing port, gas/liquid mass flow rate ratio and the Weber number. Though the correlation is somewhat complicated, it represents the experimental data within an accuracy of ${\pm}15%$.EX>${\pm}15%$.

A Study on the Temperature Behavior on Impinging Plate of Diesel Spray with Ultra High Pressure (극초고압 디젤분무의 충돌면 온도거동에 관한 연구)

  • Lee Jong Tai;Jeong Dae Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.3 s.234
    • /
    • pp.402-408
    • /
    • 2005
  • The instantaneous temperature behaviors on impinging plate in case of ultra high pressure have been measured and analyzed by using the instantaneous temperature probe and ultra high pressure injection equipment. The temperature drop was largest at P1 which is center of impinging spray and decreased with propagation of spray to the radius direction. The temperature drop was bigger in case of higher temperature of impinging plate. The temperature drop decreased with increase of injection pressure. But decreasing rate of temperature drop was slight over 2,500 bars. Therefore, it was predicted that the fuel evaporation versus the increase of injection pressure was maximum at around 2,500 bars.

Estimation on Affecting Factors and Contribution Rate for Air Permeability of Sawdust as Bulking Agent on Composting (퇴비화 첨가재인 톱밥의 공기투과성에 미치는 영향요인 및 기여도 평가에 관한 연구)

  • Kim, Byung Tae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.4
    • /
    • pp.52-62
    • /
    • 2015
  • This study estimated the contribution rates of inlet air flow, moisture content, air-filled porosity and particle size on the total pressure drop for the sawdust used as the bulking agent in the composting. The statistical model for pressure drop including the affecting factors was proposed.($R^2=0.998{\sim}0.950$) While the laminar air flow(v) and particle size(SIZE*v) had the positive relations to the total pressure drop, the turbulent air flow($v^2$), moisture content(MC*v) and air-filled porosity(AFP*v) had the negative relations. Total pressure drop sharply increased with increasing of the inlet air flow. And the most significant factors affecting to total pressure drop were the particle size(SIZE*v) as positive factor and air-filled porosity(AFP*v) as negative factor. The contribution rate to total pressure drop by the particle size(SIZE*v) was continuously increased with increasing of the inlet air flow, but the contribution rate by air-filled porosity(AFP*v) was decreased. And total pressure drop was little changed even though the increasing of moisture content above the range of dry moisture content 0.25. The contribution rates of affecting factors had the different tendencies with increasing of the moisture content, especially in the negative factors as air-filled porosity(AFP*v) and moisture content(MC*v). For effective composting process, it is preferable to select the sawdust with higher air-filled porosity as bulking agent to enhance the air permeability.

Investigation on the pressure drop characteristics of oscillating flow through regenerators under pulsating pressure conditions (맥동압력조건에서 재생기를 통한 왕복유동의 압력강하 특성에 대한 연구)

  • 최성열;남관우;정상권
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.2
    • /
    • pp.51-57
    • /
    • 2003
  • This paper proposes a new oscillating flow model of the pressure drop through the regenerator under pulsating pressure. In this oscillating flow model. pressure drop is expressed by the amplitude and the phase angle with respect to the inlet mass flow rate. In order to generalize the oscillating flow model. non-dimensional parameters, which are Reynolds number, Valensi number, gas domain length ratio, oscillating flow friction factor and phase angle of pressure drop, are derived from the capillary tube model of the regenerator. Correlations for the oscillating flow friction factor and the phase angle are obtained from the experiments for the twill-square screen regenerators under various operating frequencies and inlet mass flow rates. The oscillating friction factor is a function of the Reynolds number alone and the phase angle of pressure drop is a function of the Valensi number and the gas domain length ratio. Experiment is also performed to examine the effect of the weave style of screen. Experimental data demonstrate the superiority of the oscillating flow model over the previous steady flow model.

Evaluation of Energy Consumption of HVAC System for Air Filter Pressure Difference Change in Commercial Buildings (공조설비의 필터차압 변화에 따른 에너지 소비성능 평가)

  • Won Keun-Ho;Kwak Ro-Yeul;Huh Jung-ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1227-1233
    • /
    • 2004
  • Air handling unit (AHU)'s air filter pressure difference is important for energy consumption and indoor air quality. Both energy Performance data and air filter differential pressure of AHU in real office buildings were monitored and analyzed to investigate quantitatively energy impact as dust buildup level on air filter grows. We also modeled and simulated CAV system using HVACSIM+ program to examine the energy effect of dust buildup on filters. Through analysis of time series pressure drop data, the filter pressure difference rate has been increased due to cumulative supply air flow rate increase. As filter pressure drop increased to 1 inch water column, it is found that the supply air flow rate was decreased by 10%, the chilled water flow rate was increased by 5.9% and the pump energy consumption was increased to 5.9%.

Effects of Pulsating Flow on the Performance of a Plate Heat Exchanger (맥동유동이 판형 열교환기 성능에 미치는 영향)

  • Gang, B.H.;Kim, D.K.;Park, K.K.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1479-1484
    • /
    • 2003
  • The heat transfer enhancement by pulsating flow in a plate heat exchanger has been experimentally investigated in this study. The effect of the pulsating flow, such as pulsating frequency and flow rate, on the heat transfer as well as pressure drop in a plate heat exchanger has been studied in detail. Reynolds number in cold side of a plate heat exchanger is varied $100{\sim}530$ while that of hot side is fixed at 620. The pulsating frequency is considered in the range of $5{\sim}30$ Hz. The results of the pulsating flow are also compared with those of steady flow. It is found that the average heat transfer rate as well as pressure drop is increased as flow rate is increased for both steady flow and pulsating flow cases. When pulsating flow is applied to the plate heat exchanger, heat transfer could be substantially increased in particular ranges of pulsating frequency or Strouhal number; $St=0.36{\sim}0.60$ and pressure drop is also increased, compared with those of steady flow.

  • PDF

Heat Transfer Enhancement by Pulsating Flow in a Plate Heat Exchanger (판형 열교환기에서 맥동유동에 의한 열전달 촉진에 관한 실험적 연구)

  • Kim, Do-Kyu;Kang, Byung-Ha;Kim, Suk-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.2
    • /
    • pp.199-206
    • /
    • 2004
  • The heat transfer enhancement by pulsating flow in a plate heat exchanger has been experimentally investigated in this study. The effect of the pulsating flow, such as pulsating frequency and flow rate on the heat transfer as well as pressure drop in a plate heat exchanger has been studied in detail. Reynolds number in cold side of a plate heat exchanger is varied 100∼530 while that of hot side is fixed at 620. The pulsating frequency is considered in the range of 5∼30 Hz. The results of the pulsating flow are also compared with those of steady flow. It is found that the average heat transfer rate as well as pressure drop is increased as flow rate is increased for both steady flow and pulsating flow cases. When pulsating flow is applied to the plate heat exchanger, heat transfer could be substantially increased in particular ranges of pulsating frequency or Strouhal number; St=0.36∼0.60 and pressure drop is also increased, compared with those of steady flow. However, in the region of low pulsating frequency or high pulsating frequency, heat transfer enhancement is in meager. Heat transfer enhancement map is suggested based on Strouhal number and Reynolds number of pulsating flow.