• Title/Summary/Keyword: Pressure Drop Analysis

Search Result 681, Processing Time 0.035 seconds

Numerical Study on Cavitation Reduction in Velocity-Control Trim of Valve with High Pressure Drop (고차압 밸브의 속도제어형 트림에서 케이테이션 억제에 관한 수치적 연구)

  • Kim, Dae Kwon;Sohn, Chae Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.9
    • /
    • pp.863-871
    • /
    • 2013
  • Flow characteristics of velocity-control trim in a valve is investigated numerically with high pressure drop. A basic trim widely used for a valve in domestic powerplants is selected and designed for a baseline of velocity-control trim. The numerical analysis is focused on flow rate and cavitation with the basic trim. For a condition of high-pressure drop, pressure drop between inlet and outlet and fluid temperature are selected to be 18.1 MPa and $160^{\circ}C$, respectively, which are typical ones considering operating conditions adopted in powerplants. With this baseline model and condition, design changes are made for improvement of flow rate and cavitation phenomenon. For re-design, trim is divided into three zones in radial direction and design parameters of flow area, stage, and flow direction are considered in each zone. With these combined parameters applied to each zone, 4 models with design changes are proposed and their flow rates and cavitation areas are investigated. From comparison with those in the baseline model of a basic trim, proposed models show better performance in both flow rate and cavitation.

Characteristics of the Water Pressure Drop Considering Heat Transfer in the Evaporator and Condenser of a Water Chiller (냉수공장에서 열전달을 고려한 응축기와 증발기의 물 압력강하 특성)

  • Nguyen, Minh Phu;Lee, Geun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1293-1300
    • /
    • 2011
  • The configurations of the evaporator and condenser of a water chiller can be determined from the trade-off between the heat transfer area, which is related to the capital cost and the pressure drop, which is associated with the operational cost. In this study, the design of the water chiller focused on minimizing the water pressure drop of both condenser and evaporator for given cooling capacity and requirements. Commercial enhanced tubes were employed to simulate real-life conditions. The results of the present analysis were compared with those obtained by HTRI software for verifying them. The results indicated that a reduction in the water pressure drop, which is associated with the short length of a tube, can be effected by decreasing the number of tube passes and increasing the number of tubes and the tube diameter. However, using a large number of tubes with smaller diameters can reduce the capital cost because the tubes are short. The reduction of the capital cost is due to the fact that a small-diameter tube has low internal thermal resistance and hence contributes to a decrease in the overall thermal resistance per unit length.

Wet Drop Impact Response Analysis of CCS in Membrane Type LNG Carriers -I : Development of Numerical Simulation Analysis Technique through Validation- (멤브레인형 LNG선 화물창 단열시스템의 수면낙하 내충격 응답해석 -I : 검증을 통한 수치해석 기법 개발-)

  • Lee, Sang-Gab;Hwang, Jeong-Oh;Kim, Wha-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.726-734
    • /
    • 2008
  • While the structural safety assessment of Cargo Containment System(CCS) in membrane type LNG carriers has to be carried out in consideration of sloshing impact pressure, it is very difficult to figure out its dynamic response behaviors due to its very complex structural arrangements/materials and complicated phenomena of sloshing impact loading. For the development of its original technique, it is necessary to understand the characteristics of dynamic response behavior of CCS structure under sloshing impact pressure. In this study, for the exact understanding of dynamic response behavior of CCS structure in membrane Mark III type LNG carriers under sloshing impact pressure, its wet drop impact response analyses were carried out by using Fluid-Structure Interaction(FSI) analysis technique of LS-DYNA code, and were also validated through a series of wet drop experiments for the enhancement of more accurate shock response analysis technique. It might be thought that the structural response behaviors of impact response analysis, such as impact pressure impulses and resulted strain time histories, generally showed very good agreement with experimental ones with very appropriate use of FSI analysis technique of LS-DYNA code, finite element modeling and material properties of CCS structure, finite element modeling and equation of state(EOS) of fluid domain.

Numerical Study on The Effect of Bending Angle on Pressure Change in High Pressure Hose (고압 호스에서 굽힘의 각도가 압력 변화에 미치는 영향에 대한 수치해석적 연구)

  • Hong, Ki-Bea;Kim, Min-Seok;Ryou, Hong-Sun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.1
    • /
    • pp.61-70
    • /
    • 2022
  • Fire damage time in high-rise buildings and wildland fire increasing every year. The use of high-pressure fire pumps is required to effectively extinguish fires. Reflecting the curvature effect of the fire hose occurring at the actual fire fighting site, this study provides a database of pressure drop, discharge velocity and maximum discharge height through C FD numerical analysis and it can provide using standards for fire extinguishing. Two Reynolds numbers of 200000 and 400000 were numerically analyzed at 0° -180° bending with water of 25℃ as a working fluid in hoses with a diameter of 65mm, a length of 15m, and a radius of curvature of 130mm. Realizable k-ε turbulence model was used and standard wall function was used. The pressure drop increases as the bending angle increases, and the maximum value at 90° and then decreases. The increasing rate is greater than the decrease. The velocity of the secondary flow also decreases after having the maximum value at 90°. The decreasing rate is greater than the increase. The turbulent kinetic energy increases to 120° and decreases with the maximum value. Pressure drop, velocity of the secondary flow, and turbulence kinetic energy are measured larger in the second bending region than in the first bending region.

Numerical analysis for heat transfer and pressure drop characteristics of (다양한 배플 인자에 따른 셀-튜브 열교환기의 열전달 및 압력강하 특성에 관한 수치해석)

  • Hou, Rong-Rong;Park, Hyeong-Seon;Yoon, Jun-Kyu;Lim, Jong-Han
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.367-375
    • /
    • 2014
  • In numbers of kinds of heat exchanger, the shell-tube heat exchanger is the most commonly used type of heat exchanger in the industry field. In order to improve the thermal performance of the heat exchanger, this study was analyzed heat transfer characteristics according to arrangement of baffle and direction of baffle and bump phase of baffle about shell-tube heat exchanger using appropriate SST (Shear Stress Transport) turbulence model for flow separation and boundary layer analysis. As the boundary condition for CFD (Computational Fluid Dynamics) analysis, the inlet temperature of shell side was constantly 344 K and the variation of the water flow rate was 6, 12, 18 and 24 l/min. As the result of analysis, zigzag baffle arrangement enhances heat transfer rate and pressure drop. Furthermore, in the direction of the baffle, heat transfer rate is more improved with vertical type and angle $45^{\circ}$ type than existing type, and pressure drop was little difference. Also, the bump shape of baffle surface contributes to heat transfer rate and pressure drop improvement due to the increased heat transfer area. Through analysis results, we knew that the increase of the heat transfer was influenced by flow separation, fluid residual time, contact area with the tube, flow rate, swirl and so on.

Numerical study on the pressure drop and heat transfer enhancement in a flat-plate solar collector (평판형 태양열 집열기의 압력강하 및 열전달 성능 향상에 관한 수치해석적 연구)

  • Heo, Joo-Nyoung;Shin, Jee-Young;Lee, Dooho;Son, Young-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.316-323
    • /
    • 2013
  • The use of artificial roughness in various forms of shapes and sizes is the most common and effective way to improve the performance of a flat-plate solar collector. In the present study, numerical analysis on heat transfer and pressure drop was performed in a rectangular channel with various rib arrays. The uniform heat flux is applied to the channel from the upper side. The forms of ribs considered in this study were rib $90^{\circ}$, groove $90^{\circ}$, groove $60^{\circ}$, baffle $90^{\circ}$, baffle $60^{\circ}$, wave $90^{\circ}$ and wave $60^{\circ}$. Air is the working fluid, and the Reynolds number ranges from 3200 to 17800. Nusselt number and friction factor were investigated to predict the performance of the system with various type of ribs. The average Nusselt number and pressure drop were increased with the increase of velocity in all types of ribs. The highest heat transfer and pressure drop occurred for the baffle $90^{\circ}$, but highest performance factor considering heat transfer and pressure drop together occurred for the groove $60^{\circ}$. Therefore, heat transfer and pressure drop should be considered together when a flat plate solar collector is designed.

Plantar Pressure Distribution During Level Walking, and Stair Ascent and Descent in Asymptomatic Flexible Flatfoot

  • Kim, Jeong-Ah;Lim, One-Bin;Yi, Chung-Hwi
    • Physical Therapy Korea
    • /
    • v.20 no.4
    • /
    • pp.55-64
    • /
    • 2013
  • The first purpose was to identify the plantar pressure distributions (peak pressure, pressure integral time, and contact area) during level walking, and stair ascent and descent in asymptomatic flexible flatfoot (AFF). The second purpose was to investigate whether peak pressure data during level walking could be used to predict peak pressure during stair walking by identifying correlations between the peak pressures of level walking and stair walking. Twenty young adult subjects (8 males and 12 females, age $21.0{\pm}1.7$ years) with AFF were recruited. A distance greater than 10 mm in a navicular drop test was defined as flexible flatfoot. Each subject performed at least 10 steps during level walking, and stair ascent and descent. The plantar pressure distribution was measured in nine foot regions using a pressure measurement system. A two-way repeated analysis of variance was conducted to examine the differences in the three dependent variables with two within-subject factors (activity type and foot region). Linear regression analysis was conducted to predict peak pressure during stair walking using the peak pressure in the metatarsal regions during level walking. Significant interaction effects were observed between activity type and foot region for peak pressure (F=9.508, p<.001), pressure time integral (F=5.912, p=.003), and contact area (F=15.510, p<.001). The regression equations predicting peak pressure during stair walking accounted for variance in the range of 25.7% and 65.8%. The findings indicate that plantar pressures in AFF were influenced by both activity type and foot region. Furthermore the findings suggest that peak pressure data during level walking could be used to predict the peak pressure data during stair walking. These data collected for AFF can be useful for evaluating gait patterns and for predicting pressure data of flexible flatfoot subjects who have difficulty performing activities such as stair walking. Further studies should investigate plantar pressure distribution during various functional activities in symptomatic flexible flatfoot, and consider other predictors for regression analysis.

Determination of horizontal two-phase flow patterns based on statistical analysis of instantaneous pressure drop at an orifice (오리피스 순간압력강하의 통계해석을 통한 수평 2상유동양식의 결정)

  • 이상천;이정표;김중엽
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.810-818
    • /
    • 1987
  • A new method is proposed to identify two-phase flow regimes in horizontal gas-liquid flow, based upon a statistical analysis of instantaneous pressure drop curves at an orifice. The probability density functions of the curves indicate distinct patterns depending upon the two-phase flow regime. The transition region also could be identified by the distribution shape of the probability density function. The statistical properties of the pressure drop are analyzed for various flow regimes and transitions. Finally, the data of flow patterns determined by the proposed method are compared with the flow pattern maps suggested by other investigators.

A Study on Performance Analysis of the Helically Coiled Evaporator with Circular Minichannels

  • Kim Ju-Won;Im Yong-Bin;Kim Jong-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.7
    • /
    • pp.1059-1067
    • /
    • 2006
  • In order to develop a compact evaporator, experiments that show characteristics of evaporating heat transfer and pressure drop in the helically coiled minichannel were performed in our previous research. This study was focused on the performance analysis of helically coiled heat exchangers with circular minichannels with an inner diameter=1.0 mm. The working fluid was R-22, and the properties of R-22 were estimated using the REFPROP program. Numerical simulation was performed to compare results with the experimental results of the helically coiled heat exchanger. As the heat transfer rate and pressure drop were calculated at the micro segment of the branch channels, the performance of the evaporator was evaluated. The following conclusions were obtained through the numerical simulations of the helically coiled heat exchanger. It showed good performance when the flow rate of each branch channels was suitable to heat load of air-side. The numerical simulation value agreed with experimental results within ${\pm}15%$. In this study, a numerical simulation program was developed to estimate the performance of a helically coiled evaporator. And, an optimum helically coiled minichannels evaporator was designed.

Flow Analysis of the Plain Seal with Injection (분사를 수반하는 평씨일 내의 유동해석)

  • 이관수;김우승;김기연;김창호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.795-802
    • /
    • 1992
  • A numerical analysis is performed on the turbulent flow in the plain seal with injection. The parameters used in this study are as follows : Reynolds number, rotation speed, injection speed, clearance ratio, injection angle, and axial injection location. Flow pattern and leakage performance due to the variation of parameters are investigated. SIMPLER algorithm is used to solve the Navier-Stokes equation governing steady, incompressible turbulent flow and standard K- .epsilon. turbulent model is used to consider the turbulence effects. The leakage performance is significantly enhanced with injection. The increases of the injection flow rate and be rotation speed of the shaft cause the leakage performance to the increased. With the increase of the Reynolds number the leakage performance is diminished. At the injection angle of 90deg, the leakage coefficient has a minimum value. The pressure drop has a maximum value at axial center location but the injection location has little effect on the pressure drop. Clearance ratio has a significant effect on the pressure drop.