DOI QR코드

DOI QR Code

Numerical study on the pressure drop and heat transfer enhancement in a flat-plate solar collector

평판형 태양열 집열기의 압력강하 및 열전달 성능 향상에 관한 수치해석적 연구

  • Received : 2012.11.21
  • Accepted : 2013.05.13
  • Published : 2013.05.31

Abstract

The use of artificial roughness in various forms of shapes and sizes is the most common and effective way to improve the performance of a flat-plate solar collector. In the present study, numerical analysis on heat transfer and pressure drop was performed in a rectangular channel with various rib arrays. The uniform heat flux is applied to the channel from the upper side. The forms of ribs considered in this study were rib $90^{\circ}$, groove $90^{\circ}$, groove $60^{\circ}$, baffle $90^{\circ}$, baffle $60^{\circ}$, wave $90^{\circ}$ and wave $60^{\circ}$. Air is the working fluid, and the Reynolds number ranges from 3200 to 17800. Nusselt number and friction factor were investigated to predict the performance of the system with various type of ribs. The average Nusselt number and pressure drop were increased with the increase of velocity in all types of ribs. The highest heat transfer and pressure drop occurred for the baffle $90^{\circ}$, but highest performance factor considering heat transfer and pressure drop together occurred for the groove $60^{\circ}$. Therefore, heat transfer and pressure drop should be considered together when a flat plate solar collector is designed.

평판형 태양열 집열기의 성능을 향상시키기 위하여 다양한 형태의 형상과 크기의 인공 거칠기가 가장 일반적이고 효과적으로 사용된다. 본 연구에서는 다양한 형상의 립을 삽입한 사각 채널에서의 열전달 특성 및 압력강하에 대하여 수치해석을 수행하였다. 사각 채널의 윗 평판에 일정한 열유속을 가하였다. 삽입된 립의 형상은 rib $90^{\circ}$, groove $90^{\circ}$, groove $60^{\circ}$, baffle $90^{\circ}$, baffle $60^{\circ}$, wave $90^{\circ}$, wave $60^{\circ}$ 모델이다. 작동유체는 공기이며 Reynolds 수는 3200~17800의 범위이다. 다양한 형태의 립 형상에 따른 시스템의 성능을 예측하기 위하여 Nusselt 수와 마찰인자를 고찰하였다. 모든 형태의 립에서 속도가 증가할수록 Nusselt 수와 압력강하는 증가하였다. 열전달 향상과 압력강하가 가장 높은 모델은 baffle $90^{\circ}$ 모델이지만, 열전달 특성과 압력강하를 고려하여 나타낸 성능계수에서는 groove $60^{\circ}$ 모델이 가장 크게 나왔다. 따라서 평판형 태양열 집열기에서는 열전달 향상과 압력강하를 항상 동시에 고려한 설계가 필요하다.

Keywords

References

  1. R. Manglik, A. Benjan, and A. D. Kraus, Heat Transfer Handbook, John Wiley & Sons Inc., 2003.
  2. V. S. Hans, R. P. Saini, and J. S. Saini, "Performance of artificially roughened solar air heaters - a review," Renewable and Sustainable Energy Reviews, vol. 13, pp. 1854-1869, 2009. https://doi.org/10.1016/j.rser.2009.01.030
  3. J. H. Kim, J. N. Heo, S. H. Ahn, D. H. Lee, Y. S. Son, and J. Y. Shin, "Numerical analysis on heat transfer and pressure drop characteristics in a horizontal channel with various ribs," Journal of the Korean Society of Marine Engineering, vol. 37, no. 1, pp. 40-46, 2013 (in Korean). https://doi.org/10.5916/jkosme.2013.37.1.40
  4. B. Bhushan and R. Singh, "Nusselt number and friction factor correlations for solar air heater duct having artificially roughened absorber plate," Solar Energy, vol. 85, pp. 1109-1118, 2011. https://doi.org/10.1016/j.solener.2011.03.007
  5. K. R. Aharwal, B. K. Gandhi, and J. S. Saini, "Experimental investigation on heat-transfer enhancement due to a gap in an inclined continuous rib arrangement in a rectangular duct of solar air heater," Renewable Energy, vol. 33, pp. 585-596, 2008. https://doi.org/10.1016/j.renene.2007.03.023
  6. S. V. Karmare and A. N. Tikekar, "Heat transfer and friction factor correlation for artificially roughened duct with metal grit ribs," International Journal of Heat and Mass Transfer, vol. 50, pp. 4342-4351, 2007. https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.065
  7. V. S. Hans, R. P. Saini, and J. S. Saini, "Heat transfer and friction factor correlations for a solar air heater duct roughened artificially with multiple v-ribs," Solar Energy, vol. 84, pp. 898-911, 2010. https://doi.org/10.1016/j.solener.2010.02.004
  8. E. K. Akpinar and F. Kocyigit, "Experimental investigation of thermal performance of solar air heater having different obstacles on absorber plates," International Communications in Heat and Mass Transfer, vol. 37, pp. 416-421, 2010. https://doi.org/10.1016/j.icheatmasstransfer.2009.11.007
  9. A. Kumar, J. L. Bhagoria, and R. M. Sarviy, "Heat transfer and friction correlations for artificially roughened solar air heater duct with discrete w-shaped ribs," Energy Conversion and Management, vol. 50, pp. 2106-2117, 2009. https://doi.org/10.1016/j.enconman.2009.01.025
  10. S. Singh, S. Chander, and J. S. Saini, "Heat transfer and friction factor correlations of solar air heater ducts artificially roughened with discrete v-down ribs," Energy, vol. 36, pp. 5053-5064, 2011. https://doi.org/10.1016/j.energy.2011.05.052
  11. FLUENT, "FLUENT 6.3 manual," 2009.
  12. R. L. Webb and D. L. Gee, "Forced convection heat transfer in helically rib-roughened tubes," International Journal of Heat and Mass Transfer, vol. 23, pp. 1127-1136, 1980. https://doi.org/10.1016/0017-9310(80)90177-5

Cited by

  1. CFD를 활용한 태양열 공기가열기 내 사각저항체 설치 조건에 따른 열전달 및 압력강하에 관한 연구 vol.39, pp.1, 2013, https://doi.org/10.7836/kses.2019.39.1.077