• 제목/요약/키워드: Pressure Driven Analysis

검색결과 190건 처리시간 0.026초

전류파형분석에 의한 완전이식 인공심장의 심박출량 자동제어 알고리즘 (Automatic cardiac output control algorithm for total artificial heart by current waveform analysis)

  • 최원우;김희찬;민병구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.383-391
    • /
    • 1993
  • In this paper, a new automatic cardiac output control algorithm without any pressure sensors for the motor-driven electromechanical total artificial heart(TAH) was developed using motor current information. In the previous studies, many transducers were utilized to obtain informations of hemodynamic states for the automatic cardiac output control. But. such automatic control with sensors has some problems. To solve these problems, I proposed a new "sensorless" automatic cardiac output control algorithm providing the adequate cardiac output to the time-varying physiological demand without right atrial collapse. In-vitro tests were performed to evaluate the performance of a new algorithm and it satisfied the basic three requirements on the pump output response through the mock circulation tests.

  • PDF

압전식 구동기를 이용한 양방향 마이크로 펌프의 성능에 관한 연구 (A Study on the Performance Characteristics of a New Bi-directional Micropump Using Piezoelectric Actuator)

  • 최종원;윤재성;김민수
    • 대한기계학회논문집B
    • /
    • 제30권4호
    • /
    • pp.350-357
    • /
    • 2006
  • A new valveless micropump for bi-directional application has been developed and tested. The micropump was fabricated on silicon and glass substrates by micromachining process. The micropump in this study consists of a membrane actuator, a pumping chamber, fluidic channels and two piezoelectric ceramic films. The channels and pumping chamber were etched on a glass wafer and the membrane was made on a silion wafer which is actuated by a piezoelectric ceramic (PZT) film. The geometry of the micropump was optimized by numerical analysis and the performance of the micropump was investigated by the experiments. The maximum flow rate was $323{\mu}L/min$ and the maximum back pressure was 294 Pa when the membrane actuator of $10{\times}10mm^2$ was driven at 130 Hz and 385 V.

예조건화 압축성 알고리즘에 의한 저마하수 유동장 해석기법 (Preconditioned Compressible Navier- Stokes Algorithm for Low Mach Number Flows)

  • 고현;윤웅섭
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 춘계 학술대회논문집
    • /
    • pp.35-42
    • /
    • 1998
  • Time marching algorithms applied to compressible Navier-Stokes equation have a convergence problem at low Mach number. It is mainly due to the eigenvalue stiffness and pressure singularity as Mach number approaches to zero. Among the several methods to overcome the shortcomings of time marching scheme, time derivative preconditioning method have been used successfully. In this numerical analysis, we adopted a preconditioner of K.H. Chen and developed a two-dimensional, axisymmetric Navier-Stokes program. The steady state driven cavity flow and backward facing step flow problems were computed to confirm the accuracy and the robustness of preconditioned algorithm for low Mach number flows. And the transonic and supersonic flows insice the JPL axisymmetric nozzle internal flow is exampled to investigate the effects of preconditioning at high Mach number flow regime. Test results showed excellent agreement with the experimental data.

  • PDF

하이드로 피어싱된 튜브 부위의 변형해석 (Analysis of Deformation Surrounding the Pierced Hole in the Tube Hydro-Piercing Process)

  • 최성기;김동규;문영훈
    • 소성∙가공
    • /
    • 제13권2호
    • /
    • pp.154-159
    • /
    • 2004
  • Deformation surrounding the hole in the tube during the hydropiercing process has been investigated in this study. The tube is expanded and internally pressurized between upper and lower dies, and a piercing punch is driven forcefully through a cross passage in the die and through the wall of the tube. The pressurized fluid within the tube provides support to the wall of the tube during a piercing step to form a hole in the tube having less deformation surrounding the hole in the tube. The deformation area may be fully retracted to a substantially flat form or partially retracted to a countersunk form. In this study, a mathematical model that can predict deformation surrounding the hole has been proposed and experimentally verified by actual hydropiercing test.

보조 동력 장치 연료 공급용 서보밸브의 유동 특성 해석 (Flow Characteristics of the Servo Valve in the Fuel Supply System of APU)

  • 김성수;장세영;정헌술;류혁;이상효
    • 유공압시스템학회논문집
    • /
    • 제5권4호
    • /
    • pp.10-16
    • /
    • 2008
  • In this paper, the authors benchmark a servo valve model for the fuel supply system of Auxiliary Power Unit (APU) in the KHP helicopter. This valve is directly driven with a torque motor, and the size of small gap controlled by a flapper can make change of flow rate under given pressure drop between inlet and outlet. CFD analyses using a commercial code, ANSYS-CFX 10 are performed for the series of three-dimensional models at various openness conditions. The computational results on simplified models show that CFD can play a fine roll in the design of flow path as well as in the estimation of flow force due to its precision and good repeatability. Consequently, the CFD analysis helps valve designers to understand its flow characteristics from the basis of physical fundamentals.

  • PDF

파워스티어링용 유압펌프의 일체형 풀리 개발 (Development of Monolith Type Driving Pulley of Power Steering Hydraulic Pump)

  • 이춘태
    • 유공압시스템학회논문집
    • /
    • 제7권4호
    • /
    • pp.9-14
    • /
    • 2010
  • Most power steering systems work by using a hydraulic system to turn the vehicle's wheels. The pressure is usually provided by a hydraulic pump driven by the vehicle's engine. A double-acting hydraulic cylinder applies a force to the steering gear, which in turn applies a torque to the steering axis of the road wheels. The flow to the cylinder is controlled by valves operated by the steering wheel ; the more torque the driver applies to the steering wheel and the shaft it is attached to, the more fluid the valves allow through to the cylinder, and so the more force is applied to steer the wheels in the appropriate direction. Since the pumps employed are of the positive displacement type, the flow rate they deliver is directly proportional to the speed of the engine. And for a long time, the type of hydraulic pump pulley was boss welding type. But recently, monolith type driving pulley is widely used. Therefore in this paper we studied the safety of monolith type driving pulley to the extracting force and endurance by FEM analysis and experiments.

  • PDF

보행 로봇을 위한 서보밸브 구동 유압 액추에이터의 특성 분석 (A Study of Hydraulic Actuator Based On Electro Servo Valve For A Walking Robot)

  • 조정산
    • 드라이브 ㆍ 컨트롤
    • /
    • 제13권2호
    • /
    • pp.26-33
    • /
    • 2016
  • This paper describes of a mathematical and real experimental analysis for a walking robot which uses servo valve driven hydraulic actuator. Recently, many researchers are developing a walking robot based on hydraulic systems for the difficult and dangerous missions such as walking in the rough terrain and carrying a heavy load. In order to design and control a walking robot, the characteristics of the hydraulic actuators in the joint through the view point of walking such as controllability and backdrivability must be analyzed. A general mathematical model was used for analysis and proceeds to position and pressure changes characteristic of the input and backdrivability experiment. The result shows the actuator is a velocity source, had a high impedance, the output stiffness is high in contact with the rigid external force. So stand above the controller and instruments that complement the design characteristics can be seen the need to apply a hydraulic actuator in walking robot.

저등급 열원으로 구동되는 직렬 열병합 발전시스템의 엑서지와 엔트랜시 성능 특성 (Exergy and Entransy Performance Characteristics of Cogeneration System in Series Circuit Using Low-Grade Heat Source)

  • 김경훈;정영관
    • 한국수소및신에너지학회논문집
    • /
    • 제31권6호
    • /
    • pp.637-645
    • /
    • 2020
  • In this paper, entransy analysis is carried out for combined heat and power (CHP) generation system driven by low-grade heat source compared with energy and exergy analyses. The system consists of a regenerative organic rankine cycle (ORC) and an additional process heater in a series circuit. Special attention is paid to the effects of the turbine inlet pressure, source temperature, and the working fluid on the thermodynamic performance of the system. Results showed that the work efficiency of entransy is higher than that of energy but lower than that of exergy, wheress the process heat efficiency of entransy is lower than that of energy but higher than that of exergy. Entrance analysis showed the potential to complement the exergy analysis in the optimal design of the energy system.

저등급 열원으로 구동되는 병렬 열병합 발전시스템의 엑서지와 엔트랜시 성능 특성 (Exergy and Entransy Performance Characteristics of Cogeneration System in Parallel Circuit Using Low-Grade Heat Source)

  • 김경훈;김경진;정영관
    • 한국수소및신에너지학회논문집
    • /
    • 제32권1호
    • /
    • pp.77-85
    • /
    • 2021
  • In this paper, entransy analysis is carried out for combined heat and power (CHP) generation system driven by low-grade heat source compared with energy and exergy analyses. The system consists of an organic Rankine cycle (ORC) and an additional process heater in a parallel circuit. Special attention is paid to the effects of the source temperature, turbine inlet pressure, and the working fluid on the thermodynamic performance of the system. Results showed that the work efficiency of entransy is higher than that of energy but lower than that of exergy, wheress the process heat efficiency of entransy is lower than that of energy but higher than that of exergy. Entrancy analysis showed the potential to complement the exergy analysis in the optimal design of the energy system.

기체-액체 이젝터의 디퓨저 형상에 대한 연구 (STUDY ON THE PERFORMANCE OF THE SHAPE OF THE AIR-LIQUID EJECTOR DIFFUSER)

  • 장진우;신원협;박영철
    • 한국산학기술학회논문지
    • /
    • 제15권11호
    • /
    • pp.6412-6418
    • /
    • 2014
  • 본 논문은 기체-액체 이젝터의 수치해석연구에 초점을 맞추고 있다. 이젝터는 구동유체가 노즐을 통해 고속으로 분출될 때, 구동노즐 출구 주변에 진공압이 형성되어 주변의 기체와 운동량 교환을 통하여 저압의 유체를 보다 높은 압력으로 압축하여 수송하는 장치이다. 기체-액체 이젝터는 상용 소프트웨어 ANSYS-CFX 14.0을 사용하여 다상의 CFD 분석을 통해 연구한다. 구동유체는 물을 사용하여 구동되며, 실제로는 공기가 아닌 오존을 사용하여 배출 된다. 기체-액체 이젝터의 디퓨저의 형상에 따라 성능 차이를 비교한다. 결과 기체-액체 이젝터의 성능에 미치는 다양한 요인을 제공 한다. 그리고 제안 된 수치 모델은 기체-액체 이젝터의의 최적 설계에 매우 도움이 될 것다.