• Title/Summary/Keyword: Pressure Chamber

Search Result 2,134, Processing Time 0.026 seconds

The effect of ignition position on combustion in the chamber with swirl flow (선회류가 있는 연소실의 연소에 미치는 점화위치의 영향)

  • 이종태
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.42-53
    • /
    • 1988
  • The effects of ignition position on combustion in a chamber with swirl flow were investigated by use of hot wire anemometer, high speed schlieren photography, and chamber pressure measurement. In experiments, the closed-constant volume combustion chamber was used, and the swirl was formed unsteadily by suction of external fluid after reducing pressure in the chamber. Results show that the effect of ignition position on combustion depends on the flow state and the flame propagation distance corresponding to each ignition position. Also, the effect of combustion promoting increases as an ignition position moves from the center of chamber to the outside, but maximum burning pressure was obtained at the position that is the shortest flame propagation distance.

  • PDF

The Minimization of Generator Output Variations by Impulse Chamber Pressure Control during Turbine Valve Test (터빈 밸브시험 중 충동실 압력제어에 의한 발전기 출력변동 최소화)

  • Choi, In-Kyu;Kim, Jong-An;Park, Doo-Yong;Woo, Joo-Hee;Shin, Jae-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.152-159
    • /
    • 2010
  • This paper describes the actual application of a feedback control loop as a means for minimizing turbine impulse chamber pressure variation during the turbine steam valve tests at a 1,000 MW nuclear power plant. The chamber pressure control loop was implemented in the new digital control system which was installed as a replacement for the old analog type control system. There has been about 40MW of the generator output change during the steam valve tests, especially the high pressure governing valve tests, because the old control system had not the impulse chamber pressure control so the operators had to compensate steam flow drop manually. The process of each valve test consists of a closing process and an reopening process and the operators can make sure that the valves are in their sound conditions by checking the valves movement. The control algorithm described in this paper contributed to keep the change in megawatt only to 6MW during the steam valve tests. Thereby, the disturbance to reactor control was reduced, and the overall plant control system's stability was greatly improved as well.

A Study on the Multiple OWC Chamber Motion in Waves (다중 OWC챔버 구조물의 운동해석)

  • Hong, Do-Chun;Hong, Sa-Young;Hong, Seok-Won
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.202-205
    • /
    • 2002
  • The motion of a floating body with multiple owe chambers in waves is studied taking account of fluctuating air pressure in the chambers. The atmospheric pressure drop in one chamber is interrelated with the drop in the other chamber. Velocity potential in the water due to the free surface oscillating pressure patches is calculated by making use of the hybrid Green integral equation. The chamber motion in the frequency domain is calculated for various values of parameters related to the atmospheric pressure drop in the multiple chambers.

  • PDF

Flame Propagation Characteristics of Propane-Air Premixed Mixtures (프로판-공기 예혼합기의 화염전파 과정에 관한 연구)

  • Bae, Choong-Sik
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.2
    • /
    • pp.21-29
    • /
    • 1996
  • Flame propagation characteristics of propane-air mixtures were experimentally investigated in constant-volume combustion chambers. Flame propagation process was observed as a function of mixture strength, initial mixture temperature and initial mixture pressure in quiescent mixtures. A cylindrical combustion chamber and a spherical combustion chamber contain a pair of parallel windows through which optical access into the chamber can be provided. Laser two beam deflection method was adopted to measure the local flame propagation, which gave information on the flame size and flame propagation speed. Pressure development was also measured by a piezoelectric pressure transducer to characterize combustion in quiescent mixtures. Burning velocity was calculated from flame propagation and pressure measurements. The effect of flow on flame propagation was also investigated under flowing mixture conditions. Laser two beam method was found to be feasible in measuring flame propagation of quiescent mixtures. Flame was observed to propagate faster with higher initial mixture temperature and lower initial pressure. Combustion duration was shortened in the highly turbulent flowing mixtures.

  • PDF

Quality Attributes of Carrot Pieces for Baby Foods Prepared under Different Freeze Drying Conditions (냉동 건조 조건에 따른 이유식용 당근의 품질 특성)

  • Kim, Hye-Kyoung;Suh, Dong-Soon;Lee, Young-Chun;Kim, Kwang-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.799-804
    • /
    • 2002
  • Optimum conditions of freeze-dried carrots were determined using response surface methodology. Physicochemical and sensory properties of freeze-dried carrot prepared at different plate temperatures and chamber pressures were evaluated. Drying time increased with decreasing plate temperature and chamber pressure. Rehydration ratio decreased inversely with chamber pressure at low plate temperature, but increased proportionally with chamber pressure at high temperature. Density, color, and sensory off-flavor were not affected by the plate temperature and chamber pressure. Sensory color, tenderness, and carrot flavor increased with decreasing plate temperature, but were not affected by chamber pressure. Based on the drying time, rehydration ratio, and sensory attributes, optimum plate temperature and chamber pressure for the preparation of freeze-dried carrot were determined as $43^{\circ}C$ and 700 micronHg, respectively.

A Study on the Discharge Pressure Ripple Characteristics of Variable Displacement Vane Pump (가변용량형 유압 베인펌프의 토출압력맥동 특성 연구)

  • 장주섭;김경훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.106-114
    • /
    • 2003
  • The pressure ripple in the delivery port is caused by flow ripple, which is induced by variation of pumping chamber volume. The other reason is the reverse flow from the outlet volume produced by pressure difference between pumping chamber and outlet volume, when the pumping chamber is connected with the outlet volume. In this study, a mathematical model is presented for analyzing discharge pressure ripple, which includes vane detachment, cam ring movement , and fluid inertia effects in V-groove in the side plate. From the analysis and experiment, it was found that V-groove on the side plate, coefficient of spring supporting the cam ring, and average discharge pressure are the main factors of discharge pressure ripple in variable displacement vane pump. The theoretical results, provided in this study, were well agreed with experimental results. The analytical model to estimate the magnitude of pressure ripple in this study is expected to be used f3r the optimal design of the variable displacement vane pump.

A pressure tracking controller for hydroforming process (하이드로 포밍 공정의 압력 추종제어에 관한 연구)

  • 박희재;조형석;현봉섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.317-323
    • /
    • 1987
  • A pressure tracking control of hydroforming processes, which is used in the precision forming of. sheet metals, is considered in this paper. The hydroforming of sheet metal is performed between the high-pressure chamber controlled by pressure control valve and the punch moving with constant speed. Since the pressure in the forming chamber is a critical factor to the quality of the product severely. It is important to control the pressure to follow a prescribed pressure trajectory, depending upon the material volume and shape of the parts to be formed. Taking into consideration of the volume chamge of forming chamber during the process and the nonlinearity of the electro-magnetic relief valve, a mathematical formulation of the model describing the dynamic characteristics of this model obtained. Based upon this model a PID controller is designed for the pressure tracking.

  • PDF

Ignition Experiments of a High Pressure Liquid Propellant Thrust Chamber (실물형 연소기의 점화시험)

  • Moon Ilyoon;Kim SeungHan;Kim Jonggyu;Lim Byoungjik;Lee Kwangjin;Kim Intae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.265-268
    • /
    • 2005
  • A series of ignition tests had been conducted for a thrust chamber propelled by Jet A-1 and liquid oxygen with a chamber pressure of 52.5 bara and a thrust of 30 tonf. The chamber ignited by a hypergolic fluid, TEAL, keeps its first constant pressure low at $63\%$ of the design value by $61\%$ of a liquid oxygen mass flow rate and $67\%$ of fuel for 0.25 sec. The operating O/F ratio of the chamber was kept at lower values than that of the design operating condition throughout the whole ignition procedure. Surge of the chamber pressure is below $6\%$ of the design value.

  • PDF

The Secondary Chamber Pressure Characteristics of Sonic/Supersonic Ejector-Diffuser System (음속/초음속 이젝터 시스템의 2차정체실 압력특성)

  • Jung, S.J.;Lee, J.H.;Lee, K.H.;Choi, B.G.;Kim, H.D.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.646-651
    • /
    • 2001
  • The present study is an experimental work of the sonic/supersonic air ejector-diffuser system. The pressure-time dependence in the secondary chamber of this ejector system is measured to investigate the steady operation of the ejector system. Six different primary nozzles of two sonic nozzles, two supersonic nozzles, petal nozzle, and lobed nozzle are employed to drive the ejector system at the conditions of different operating pressure ratios. Static pressures on the ejector-diffuser walls are to analyze the complicated flows occurring inside the system. The volume of the secondary chamber is changed to investigate the effect on the steady operation. the results obtained show that the volume of the secondary chamber does not affect the steady operation of the ejector-diffuser system but the time-dependent pressure in the secondary chamber is a strong function of the volume of the secondary chamber.

  • PDF

Microfluidic Suction Pump based on Restoring Force of Elastomer for Liquid Transportation in Microfluidic System (미세유체시스템의 유체이송을 위한 탄성체의 복원력을 이용한 흡입형 미세유체펌프)

  • Byun, Kang Il;Han, Eui Don;Kim, Byeong Hee;Seo, Young Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.81-86
    • /
    • 2015
  • This paper presents a disposable passive suction pump that uses the restoring force of an elastomeric chamber for liquid transportation in a microfluidic system. The proposed suction pump can be operated by finger pressure without any peripheral equipment. To adjust the generated suction pressure, five different displacements of the suction chamber ceiling, two different chamber shapes, and five different elastic moduli of the elastomer were considered. For a cylindrical chamber with a 5 mm height and 5 mm radius, the generated suction pressure and flow rate increased almost linearly up to about 31 kPa and $160.8{\mu}L/min$, respectively, depending on the chamber deformation. A maximum suction pressure of $42.9{\pm}0.7kPa$ was obtained for a hemispherical chamber with a 2.1 mm height and 5 mm radius.