• Title/Summary/Keyword: Pressure Balance

Search Result 841, Processing Time 0.025 seconds

Posture Correction Guidance System using Arduino (아두이노를 활용한 자세교정 유도 시스템)

  • Kim, Donghyun;Kim, Jeongmin;Bae, Woojin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.369-372
    • /
    • 2021
  • These days, people spend more time sitting at a desk for studies or work. Also, because people continue to use computers, smartphones, and tablet PCs often during break times, their posture is getting worse. Maintaining a position of bad posture for an extended period of time causes problems with the musculoskeletal system related to the neck, shoulders, and spine. Additionally, problems such as physical fatigue and posture deformation are predicted to expand to a wide range of age groups. Therefore, the core function of the system we are developing is to ensure correct sitting posture and to receive alert notifications via the created mobile application. To create the system, a flex sensor, pressure sensor, and tilt sensor are attached to a chair and utilized. The flex sensor detects and compares the amount of bending in the chair's posture and transmits this value to an Arduino Uno R3 board. Additionally, information such as body balance and incline angle are collected to determine whether or not the current sitting posture is correct. When the posture is incorrect, a notification is sent through the mobile application to indicate to the user and the monitoring app that their posture is not correct. The system proposed in this study is expected to be of great help in future posture-related research.

  • PDF

A Study on Machine Learning-Based Estimation of Roadkill Incidents and Exploration of Influencing Factors (기계학습 기반의 로드킬 발생 예측과 영향 요인 탐색에 대한 연구)

  • Sojin Heo;Jeeyoung Kim
    • Journal of Environmental Impact Assessment
    • /
    • v.33 no.2
    • /
    • pp.74-83
    • /
    • 2024
  • This study aims to estimate roadkill occurrences and investigate influential factors in Chungcheongnam-do, contributing to the establishment of roadkill prevention measures. By comprehensively considering weather, road, and environmental information, machine learning was utilized to estimate roadkill incidents and analyze the importance of each variable, deriving primary influencing factors. The Gradient Boosting Machine (GBM) exhibited the best performance, achieving an accuracy of 92.0%, a recall of 84.6%, an F1-score of 89.2%, and an AUC of 0.907. The key factors affecting roadkill included average local atmospheric pressure (hPa), average ground temperature (℃), month, average dew point temperature (℃), presence of median barriers, and average wind speed (m/s). These findings are anticipated to contribute to roadkill prevention strategies and enhance traffic safety, playing a crucial role in maintaining a balance between ecosystems and road development.

Study on Polymerization Condition of Water-based Acrylic Adhesion (수분산성 아크릴계 점착제 중합 조건에 관한 연구)

  • Lee, Haeng Ja;Jang, Suk Hee;Chang, Sang Mok;Kim, Jong Min
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.609-614
    • /
    • 2010
  • In this study, emulsion polymerizations for synthesizing acrylic pressure-sensitive adhesive(PSA) were carried out using 2-ethylhexyl acrylate(2-EHA), n-butyl acrylate(n-BA), methyl metacrylate(MMA) as fundamental monomers and acrylic acid(AAc) as a functional monomer in the presence of anionic SLS (sodium lauryl sulfate). To obtain the optimized synthetic condition in the polymerization, we analyzed the polymerization variables such as the effect of surfactant concentration and hydrophilic lipophilic values(HLB). At the same time, the final adhesive properties were also analyzed by the function of the initiator concentration and buffer concentration. In the results, the most stable emulsion was obtained at the surfactant concentrations between 3 and 5 wt%. It was also determined the effect of HLB value of nonionic surfactant and the initiator concentrations on the gel content. Stable emulsion is obtained using the surfactant having HLB value of 12.3. The rate of emulsion polymerization was increased at the initiator concentration greater than 1 wt%, but the stability of the emulsion was decreased. Finally, the effect of the buffer concentrations on the pH and the conversion of the acrylic emulsion product were experimentally measured. At the sodium bicarbonate concentration above 0.4 wt%, the buffer infulence was apparent. The buffer effect was fully acceptable at the concentrations between 0.6 and 0.8 wt% regardless of the monomer composition.

Foot/Ankle Roll-Over Characteristics According to Different Heel Heights of Shoe during Walking (보행 시 신발 굴 높이어 따른 발/발목 복합체의 Roll-Over특성)

  • Kim, Young-Ho;Choi, Hue-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.4
    • /
    • pp.247-253
    • /
    • 2005
  • This study investigated the effects on foot and ankle roll-over characteristics according to different heel heights during walking. Fifteen female volunteers who have neither musculoskeletal nor foot problems were participated in gait analyses, wearing four different pairs of shoes in different heel heights. To obtain roll-over shape of foot/ankle complex, we used trajectories of knee and ankle joints as well as the renter of pressure between initial contact and opposite initial contact. Results revealed that the entire roll-over shape moved distally as the heel height increased but roll-over characteristics showed uniformly with different heel heights. In addition, we found that nondisablea persons automatically adapted to their foot/ankle complex to varying heel heights within 6cm, by moving the origin of roll-over shape distally to maintain roll-over characteristics. However, since the balance of the gait only by the ankle joint could not be achieved beyond the heel height of 6cm, compensations at the knee and the hip joints occurred simultaneously. Roll-over characteristics in human walking would provide simpler and wider understanding of human walking, and furthermore could be applied to the wide understanding of prosthetics and orthotics of the lower extremity as well as orthopaedic shoes.

Construction and Application of an Automated Apparatus for Calculating the Soil-Water Characteristic Curve (자동 흙-함수특성곡선 시험장치 구축 및 활용)

  • Song, Young-Suk;Lee, Nam-Woo;Hwang, Woong-Ki;Kim, Tae-Hyung
    • The Journal of Engineering Geology
    • /
    • v.20 no.3
    • /
    • pp.281-295
    • /
    • 2010
  • A new, automated apparatus is proposed for calculating the Soil-Water Characteristic Curve (SWCC), representing a simple and easily applied testing device for continuous measurements of the volumetric water content and suction of unsaturated soils. The use of this apparatus helps to avoid the errors that arise when performing experiments. Consequently, the apparatus provides greater accuracy in calculating the SWCC of unsaturated soils. The apparatus is composed of a pressure panel, flow cell, water reservoir, air bubble trap, balance, sample-preparation accessories, and measurement system, among other components. The air pressure can attain 300 kPa, and a general test can be completed in a short time. The apparatus can simply control the drying process and wetting process. The changes in volumetric water content that occur during the drying and wetting processes are shown directly in the SWRC program, in real time. As a case study, we performed an SWCC test of Joomunjin sand (75% relative density) to measure matric suction and volumetric water content during both the drying and wetting processes. The test revealed hysteresis behavior, whereby the water content on the wetting curve is always lower than that on the drying curve for a specific matric suction, during the wetting and drying processes. Based on the test results, SWCCs were estimated using the Brooks and Corey, van Genuchten, and Fredlund and Xing models. The van Genuchten model performed best for the given soil conditions, as it yielded the highest coefficient of determination.

A Biomechanical Research for Incorates a Rounded Sole with a 20 Degree Heel Lift in Functional Shoes (후족부 경사각을 이용한 신발에 관한 생체역학적 연구)

  • Lee, Joong-Sook;Park, Sang-Kyoon;Park, Seung-Bum
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.4
    • /
    • pp.135-142
    • /
    • 2008
  • The primary innovation in the new footwear is a heel lift of $20^{\circ}$ which is proposed to improve posture and balance as well as increase shock absorption. The purpose of this research was to compare the movement, forces and muscle activity between the new shoes and standard athletic footwear during standing and walking. Nine healthy subjects participated in this study. Data were collected at two times: 1) when the subjects first wore the new walking shoes and 2) after the subjects wore the shoes for 6 hours a day for two weeks. 1. During standing. the movement of the center of pressure is increased approximately 60% when wearing the new walking shoes compared to a control shoe. 2. During walking. the ankle is approximately $14^{\circ}$ more dorsiflexed during landing due to the 200heel lift in the new walking shoes. The knee compensates slightly by flexing approximately $2^{\circ}$ more. 3. As a result of the changes in the walking movement, the ground reaction forces are applied more quickly, although the peak magnitudes do rut change. 4. The resultant joint moments at the ankle and knee joints decrease from 21-60% with the largest reductions occurring during landing. In conclusion, the new footwear change the movement, showing a more upright stance. Also, the new footwear reduce joint loading at the joint during the landing and weight acceptance phase of walking. However, the influence of the new footwear is immediate and does rut change after wearing the shoes for two weeks.

Study on Lateral Flow Distribution and Momentum Analysis at Flood season and Neap tide of the Seokmo Channel in the Han River estuary (소조기 홍수시 한강하구 석모수로에서의 횡 방향 2차 흐름 및 운동량 분석)

  • Choi, Nak Yong;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.6
    • /
    • pp.390-399
    • /
    • 2012
  • This research observed the cross section current of 7 survey lines in Seokmo Channel of Gyeonggi bay with a lot of freshwater inflow and S-shaped for 13 hours during flood season and neap tide. We indicated the distribution of the current velocity by comprehending the speed and direction of the current velocity of each line during maximum flood, ebb tide and observed the distribution of salinity. Moreover, in order to understand what lateral momentum causes the lateral flow in each survey line, we practiced the momentum analysis through the observation data. As a result, the lateral baroclinic pressure gradient force and vertical friction of the Seokmo channel during neap tide were the strongest, and this is why the flow by the distribution of salinity and stratification most often occurs. In north of the Seokmo channel, where have wide intertidal and a lot of freshwater inflow, the secondary circulation is caused by balance of lateral baroclinic pressure gradient force and other forces, and the vertical friction was strong in the lines with small depth. On the other hand, in the southern part of the Seokmo channel where the water is deep and the waterway is curved, the advective acceleration and centrifugal force become stronger by the geographical causes during ebb and the influence of fresh water. Therefore, the lateral flow in the Seokmo channel was caused by the distribution of the momentum that differs by location, depth, curve, etc.

Lagrangian Finite Element Analysis of Water Impact Problem (강체-유체 충격문제에 대한 Lagrangian 유한요소 해석)

  • Bum-Sang Yoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.1
    • /
    • pp.60-68
    • /
    • 1991
  • The updated Lagrangian Finite Element Method is introduced to analyse rigid body-fluid impact problem which is characterized by incompressible Navier-Stokes equations and impact-contact conditions between free surface and rigid body. For the convenience of numerical computation, velocity fields are splinted into vicous and pressure parts, and then the governing equations and boundary conditions are decomposed in accordance with the decomposition. However, Viscous stresses acting an the solid boundaries are neglected on the assumption that very small velocity gradients may occur during extremely small time interval of the impact. Four coded quadrilateral elements are used to discretize the space domain and the fully explicit time-marching algorithm is employed with a reasonably small time step. At the beginning of each time step, contact velocity of the rigid body is computed from the momentum balance between the body and the fluid. The velocity field is then computed to satisfy the discretized equations of motions and incompressibility and contact constraints as well as an exact free surface boundary condition. At the end of each time step, the fluid domain is updated from the velocity field. In the present time stepping numerical analysis, behaviour of the free surface near the body can be observed without any difficulty which is very important in the water impact problem. The applicability of the algorithm is illustrated by a wedge type falling body problem. The numerical solutions for time-varying pressure distributions and impact loadings acting ion the surface are obtained.

  • PDF

Experimental study on cooling performance characteristics of hybrid refrigeration system in a heavy duty vehicle (상용차 하이브리드 냉방시스템 냉방 성능 특성 연구)

  • Lee, Ho-Seong;Jeon, Hanbyeol;Kim, Jung-Il;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.419-425
    • /
    • 2019
  • The objective of this study was to investigate the cooling performance characteristics of a hybrid refrigeration system in a heavy duty vehicle. The tested hybrid refrigeration system had additionally an electric compressor besides the present mechanical compressor for selective use according to the operating conditions. The applied electric compressor was a scroll type and with 18.0 cc displacement. In order to analyze the performance characteristics of the hybrid refrigeration system with respect to the cooling capacity and Coefficient of Performance (COP), other components, including two different types of compressors, were installed and tested under various operating conditions such as compressor speed and air flow rate of the evaporator. When the electric compressor was operated at 4,500 rev/min, the cooling capacity was about 4.0kW and COP was 3.5. When the mechanical compressor was operated, whereas the cooling capacity was higher than the electric controlled compressor, COP was lower due to the larger displacement and higher power consumption. To analyze the hybrid system operating characteristics due to reasonable cooling capacity with electric compressor operation, the mechanical compressor and electric compressor were operated by turns every 10 minutes under certain system operating conditions. Because surge pressure occurred when both compressors were switched on, the operating strategy required some time to balance the system pressure.

Evaluation of occlusal strength using T-Scan Novus and Dental prescale II in dental prosthodontic treatments: A case report (보철물 수복 형태에 따른 T-Scan Novus와 Dental prescale II를 이용한 교합력 평가 활용 증례)

  • Su-Hyun Choi;Yu-Sung Choi;Jong-Hyuk Lee;Seung-Ryong Ha
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.61 no.2
    • /
    • pp.160-178
    • /
    • 2023
  • Diagnosis and analysis of occlusal relationships are important factors in prosthetic treatment. A thorough occlusion analysis and evaluation should be performed before treatment to restore a stable interocclusal relationship. Analysis and evaluation are essential during the treatment process and at regular follow-ups. Recently, with the development of dental equipment and digital processing methods, new quantitative analysis methods that can record the patient's occlusal relationship have been introduced. Among them, the T-Scan Novus (Tekscan Inc., S. Boston, MA, USA) displays the strength of the initial contact point and the occlusal contact point of the teeth using a pressure sensor. With this, occlusal contact time of the teeth, anteroposterior and left-right balance of occlusal force can be compared. The Dental prescale II (GC Co., Tokyo, Japan) scans the occlusal contact point using a pressure-sensing film and analyzes the density of the contact point. It can measure the distribution and strength of the occlusal force of the teeth in the most natural occlusion state. Based on this, appropriate prosthetic treatment (four-unit fixed partial denture, removable partial denture, complete denture, and complete oral restoration cases) was performed according to the area and extent of the patient's tooth loss. The patient's occlusion at the first visit, treatment stage, right after treatment, and regular follow-up were compared and evaluated using a quantitative method for appropriate occlusion analysis using T-Scan Novus and Dental prescale II. This report enhances the understanding of occlusion analysis during prosthetic restoration. The results satisfied both the clinician and patients in terms of function and aesthetics.