• Title/Summary/Keyword: Pressing cathode

Search Result 16, Processing Time 0.021 seconds

Effect of Fabrication Method of Cathode on OCV in Enzyme Fuel Cells (효소연료전지의 Cathode 제조조건이 OCV에 미치는 영향)

  • Lee, Se-Hoon;Kim, Young-Sook;Chu, Cheun-Ho;Na, Il-Chai;Lee, Jung-Hoon;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.171-174
    • /
    • 2016
  • Enzyme fuel cells were composed of enzyme cathode and PEMFC anode. Enzyme cathode was fabricated by compression of a mixture of graphite particle, laccase as a enzyme and ABTS as a redox mediator, and then coated with Nafion ionomer. Open circuit voltage (OCV) were measured with variation of cathode manufacture factors, to find optimum condition of enzyme cathode. Optimum pressure was 4.0 bar for enzyme cathode pressing process. Highest OCV was obtained at 95% graphite composition in enzyme cathodee. Optimum glucose concentration was 0.4 mol/l in cathode substrate solution.

Effect of Fabrication Method of Anode on OCV in Enzyme Fuel Cells (효소연료전지의 Anode 제조조건이 OCV에 미치는 영향)

  • Kim, Young-Sook;Lee, Se-Hoon;Chu, Cheun-Ho;Na, Il-Chai;Lee, Ho;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.6-10
    • /
    • 2015
  • Enzyme fuel cells were composed of enzyme anode and PEMFC cathode. Enzyme anodes was fabricated by compression of a mixture of graphite particle, glucose oxidase as a enzyme and ferrocene as a mediator, and then coated with Nafion ionomer. Open circuit voltage (OCV) were measured with variation of anode manufacture factors, to find optimum condition of enzyme anode. Optimum pressure was 9.0 MPar for enzyme anode pressing process. Highest OCV was obtained at 60% graphite composition in enzyme anode. Optimum glucose concentration was 1.7mol/l in anode substrate solution and enzyme activity of anode was stable for 7 days.

Effect of Thermal Pressing Temperature on the Mechanical and Material Properties of Electro-spun Polyacrylonitrile Nano-fibrous Separator (열압착 온도가 전기방사 Polyacrylonitrile 분리막의 기계적 강도 및 물성치에 미치는 영향)

  • Kim, Minchoel;Ko, Tae Jo;Arifeen, Waqas Ul;Dong, Ting
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.4
    • /
    • pp.109-116
    • /
    • 2019
  • The mechanical deformation of a battery separator causes internal short-circuiting of the cathode - anode, which directly affects the explosion/ignition of batteries. To increase the mechanical properties of the separator fabricated by electro-spinning, use of a thermal pressing method is inevitable. Therefore, this research aims to maximize the mechanical strength of a porous separator by finding the proper thermal press temperatures given to Electro-spun Polyacrylonitrile (PAN) nanofibers. The different thermal press temperatures $25^{\circ}C$, $50^{\circ}C$, $75^{\circ}C$, and $100^{\circ}C$ were applied to the electro-spun fiber at 30 MPa pressure for one hour. The higher the temperature, the higher the resultant tensile strength; however, a higher temperature also lowered the strain and porosity. Thus, the membrane thermal pressed at $50^{\circ}C$ showed the best mechanical properties and the second highest porosity. Using the data, $50^{\circ}C$ was judged as the best thermal pressing temperature in terms of performance.

Preparation and Characteristics of $La_{1-x}Sr_xCoO_3$ Cathode material as function of Sr mole fraction in SOFC (SOFC의 Sr 첨가량에 따른 $La_{1-x}Sr_xCoO_3$ Cathode 재료의 제조 및 특성 연구)

  • Park, J.H.;Eom, S.W.;Moon, S.I.;Park, T.G.;Yun, M.S.
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.202-204
    • /
    • 1994
  • Nowadays Perovskite $La_{1-x}Sr_xCoO_3$ is a preferred cathode material in the construction Solid Oxide Fuel Cell (SOFC). The $La_{1-x}Sr_xCoO_3$ with Sr contents ranging from X=0.0 to X=1.0 were prepared by a citrate method. All samples were examined by X-ray powder diffraction. The samples used for measuring thermal expansion were prepared as pellets by cold pressing and subsequent sintering in air at $1200^{\circ}C$ for 5 hours. To measure the sub-product of $La_{1-x}Sr_xCoO_3$ with YSZ, where coating films were sintered at $1200^{\circ}C$ for 5 hour.

  • PDF

Characteristics of Electric Conductivity and Adhesion with Current Collector According to Composition of $LiMn_2O_4$ Cathode (망간산화물 정극의 합제조성에 따른 전자전도특성 및 집전체와의 접착특성)

  • Eom Seung-Wook;Doh Chil-Hoon;Moon Seong-In
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.1
    • /
    • pp.1-5
    • /
    • 2001
  • Composite ratio of $LiMn_2O_4$ in cathode was optimized as function of specific surface area. Binder has to be used as possible as little, and it should maintain adhesive property between cathode composite and current collector even though in electrolytes. For this purpose, We used 'Hot Roll Pressing' method, and it was effective. To prevent separation of cathode composite from current collector, PVDF(Polyvinylidenefluoride) has to be mixed more than $1.1\%$ in weight ratio to sum of surface area of lithium manganese oxide and conducting agents. Specific internal resistance was reduced as by increasing electrical conductivity of cathode. And Ratio of 2C rate discharge capacity to 0.2C rate discharge capacity was increased by $17\%$, as increasing electrical conductivity from 0.019 mS/cm to 0.036 mS/cm.

Effect of Fabrication Method of Anode on Performance in Enzyme Fuel Cells (효소연료전지의 Anode 제조조건이 성능에 미치는 영향)

  • Lee, Se-Hoon;Hwang, Byung-Chan;Lee, Hye-Ri;Kim, Young-Sook;Chu, Cheun-Ho;Na, Il-Chai;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.667-671
    • /
    • 2015
  • Enzyme fuel cells were operated with cells composed of enzyme anode and PEMFC cathode. Enzyme anodes was fabricated by compression of a mixture of graphite particle, glucose oxidase(Gox) as a enzyme and ferrocene as a redox mediator, and then coated with Nafion ionomer solution. Performances of enzyme unit cell were measured with variation of anode manufacture factors, to find optimum condition of enzyme anode. Optimum pressure was 8.89MPa for enzyme anode pressing process. Highest power density was obtained at 60% graphite composition in enzyme anode. Optimum glucose concentration was 1.7 mol/l in anode substrate solution. The enzyme anode was stabilized by two times of deeping in Nafion solution for 1 sec.

Characteristics of Cathode material in SOFC (고체 전해질형 연료전지의 산소극 재료에 대한 연구)

  • Park, J.H.;Park, T.G.;Eom, S.W.;Kim, G.Y.;Moon, S.I.;Lim, H.C.;Lee, C.W.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1051-1053
    • /
    • 1995
  • Nowadays perovskite $La_{1-x}Sr_xMnO_3$ is preferred cathode material in Solid Oxide Fuel cell(SOFC). The $La_{1-x}Sr_xMnO_3$ with Sr contents ranging $x=0{\sim}1.0$ were prepared by a citrate method. These powders were characterized by usual means like TG/DTA, X-ray diffraction analysis. The samples used for measuring thermal expansion were prepared as pellets by cold pressing and subsequent sintering in air at $1200^{\circ}C$ for 5 hours. To measure the by-product of $La_{1-x}Sr_xMnO_3$ reacted with 8mol% YSZ, that samples were sintered at $1200^{\circ}C$ for 5 hours.

  • PDF

The Electrochemical Performance Evaluation of PBI-based MEA with Phosphoric Acid Doped Cathode for High Temperature Fuel Cell (인산 도핑 PBI계 막전극접합체를 적용한 고온형 수소연료전지의 전기화학적 내구성 연구)

  • RHEE, JUNKI;LEE, CHANMIN;JEON, YUKWON;LEE, HONG YEON;PARK, SANG SUN;KIM, TAE YOUNG;KIM, HEESEON;SONG, SOONHO;PARK, JUNG OCK;SHUL, YONG-GUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.5
    • /
    • pp.471-480
    • /
    • 2017
  • A proton exchange membrane fuel cell (PEMFC) operated at $150^{\circ}C$ was evaluated by a controlling different amount of phosphoric acid (PA) to a membrane-electrode assembly (MEA) without humidification of the cells. The effects on MEA performance of the amount of PA in the cathode are investigated. The PA content in the cathodes was optimized for higher catalyst utilization. The highest value of the active electrochemical area is achieved with the optimum amount of PA in the cathode confirmed by in-situ cyclic voltammetry. The current density-voltage experiments (I-V curve) also shows a transient response of cell voltage affected by the amount of PA in the electrodes. Furthermore, this information was compared with the production variables such as hot pressing and vacuum drying to investigate those effect to the electrochemical performances.

Performance Charateristics of Direct Borohydrides Fuel Cell with Novel Catalyst (귀금속 촉매를 사용한 직접 보로하이드라이드 연료전지의 특성 연구)

  • Jung, M.K.;Shin, D.R.;Seol, Y.K.;Jung, D.H.
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.1
    • /
    • pp.6-11
    • /
    • 2005
  • Direct borohydrides fuel cell (DBFC) was emerged to complement the problem of DMFC's low performance and methanol crossover to the cathode and to apply the fuel cell to portable and mobile devices. In this study, the characteristics of novel catalysts was tested to establish the electrode preparation process of DBFC. Pt black and carbon supported-Pt by paste method were used as the cathode catalysts. Pt black, carbon supported-Au and $AB_5$ alloy were used as the anode catalysts. The characteristics of the electrodes were analyzed by XRD, SEM, EDS. The performance test of single cell using the electrodes were carried out in order to evaluate the electrode performance. In the result, the maximum power output was obtained as 366 mW/mg when using Pt/C as anode and cathode catalysts.

Cell Design for Mixed Gas Fuel Cell (혼합가스 주입형 연료전지를 위한 전지 디자인)

  • Park, Byung-Tak;Yoon, Sung Pil
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12 s.283
    • /
    • pp.860-864
    • /
    • 2005
  • In this study, we fabricated honeycomb type Mixed-Gas Fuel Cell (MGFC) which has advantages of stacking to the axial direction and increasing volume power density. Honeycomb-shaped anode with four channels was prepared by dry pressing method. Two alternative channels were coated with electrolyte and cathode slurry in order to make cathodic reaction sites and the others were filled with partial oxidation (POX) catalyst to increase fuel conversion. Furthermore we employed the sol-gel technique which can increase cell performance and decrease carbon coking.