• Title/Summary/Keyword: Pressing Load

Search Result 84, Processing Time 0.024 seconds

Analysis of Densification Behavior of Magnesium Powders in Extrusion using the Critical Relative Density Model (임계상대밀도모델을 이용한 마그네슘분말의 압출공정 치밀화 거동)

  • Yoon, Seung-Chae;Chae, Hong-Jun;Kim, Taek-Soo;Kim, Hyoung-Seop
    • Journal of Powder Materials
    • /
    • v.16 no.1
    • /
    • pp.50-55
    • /
    • 2009
  • Numerical simulations of the powder extrusion need an appropriate pressure-dependent constitutive model for densification modeling of the magnesium powders. The present research investigated the effect of representative powder yield function of the critical relative density model. We could obtain reasonable physical properties of pure magnesium powders using cold isostatic pressing. The proposed densification model was implemented into the finite element code. The finite element analysis was applied to simulation of powder extrusion of pure magnesium powder in order to investigate the densification and processing load at room temperature.

Development of nano/micro forming and evaluation technology of Zr-base bulk metallic glass (Zr계 벌크 비정질 합금의 미세성형 및 평가기술 개발)

  • Ok M.-R.;Suh J. Y.;Chung S. J.;Hong K. T.;Ji Y. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.44-47
    • /
    • 2004
  • Although bulk metallic glasses have many outstanding aspects in their chemical, mechanical or functional properties, some critical problems still hinder their wide application. The most important one is the brittle nature of them, which is the serious problem to structural application. So, to use viscous flow is now the only competent way to form bulk metallic glass. In this study, we investigated the basic nature of viscous flow of Zr-base bulk metallic glass, vitrelloy 1, in terms of process variables. The results were used to design the thermo-mechanical process composed of heating, holding, pressing, and cooling, which have unique influence on the glass transition and crystallization behavior. We adopted small load scale and dies with nano/micro patterns on them. The results were evaluated using several analytical methods.

  • PDF

A Study of the Torsional Forward Extrusion Using the Stream Function. (유선 함수를 이용한 비틀림 전방압출 공정에 관한 연구)

  • 이상인;김영호;이종헌
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.329-332
    • /
    • 2002
  • The upper bound analysis by stream function is used to study the torsional forward extrusion. The torsional forward extrusion process not only reduces forming load but also increase optimal die angle. Optimal die angle is determined by the optimization technique. The advantages of this process are that the low capacity of pressing machine can be used and the process with a large die angle can be applied. To verify the theoretical result, we have carried out experiments using model material (plasticine) and FE simulations using DEFORM3D.

  • PDF

A study on Design and Kinematics Analysis of Robot Hand Fingers (로봇핸드 핑거의 설계 및 운동학적 해석에 관한 연구)

  • Won, Jong-Bum;Ha, Eon-Tae;Kim, Byung-Chang;Cho, Sang-yeong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.4
    • /
    • pp.231-240
    • /
    • 2015
  • In this paper, it was presented to design and analyze the kinematics of grasping a rigid object by means of multi-degrees-of-freedom hand fingers. It is shown firstly that a set of kinematic equation describing dynamics system of the arm and object together with geometric constraint of tight area-contacts is formulated by Lagrange's equation. It has been presented secondly that the problems of controlling both the forces of pressing object and the rotation angle of the object under the geometric constraints are discussed. In this research, the control method for static stable grasping and enhancing dexterity in manipulating things is proposed. It is illustrated by computer simulation that the control system gives the performance improvement in the kinematic grasping of the hand fingers of robot.

Development of Graphite Bushing for Bearing (베어링용 흑연재 Bushing 개발)

  • 김경자;조광연;정윤중;임연수
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.8
    • /
    • pp.797-802
    • /
    • 1997
  • The use of carbon materials in mechanical components such as bearings, seals, and bushings that do not require lubricants is increasing rapidly. This paper reports on establishing the optimal condition for resin-bonded carbon materials. We fixed the content ratio of materials, which include graphite powder and diatomite as a lubricant modifier and a friction modifier, respectably, with resin used as a bonding material. We then produced bushings using hot-pressing within the temperature range of resin curing. The properties of bushing, the friction coefficient, wear rate and the mechanical strengths are discussed in relation to the content of respective materials, with correlation of friction coefficient and sliding distance. Finally, we examined the friction coefficient changes according to the applied load on bushing and the friction coefficient changes according to contact speed of bushing.

  • PDF

Effect of Phase Transformation and Grain-size Variation on the Dry Sliding Wear of Hot-pressed Cobalt

  • Kim, Yong-Suk;Lee, Jong-Eun;Kang, Suk-Ha;Kim, Tai-Woong
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.879-880
    • /
    • 2006
  • Effect of phase transformation and grain-size variation of hot-pressed cobalt on its dry sliding wear was investigated. The sliding wear test was carried out against glass (83% $SiO_2$) beads at 100N load using a pin-on-disk wear tester. Worn surfaces, cross sections, and wear debris were examined by an SEM. Phases of the specimen and wear debris were identified by an XRD. Thermal transformation of the cobalt from the hcp $\varepsilon$ phase to the $\gamma$ (fcc) phase during the wear was detected, which was deduced as the wear mechanism of the sintered cobalt.

  • PDF

A Study on Effects of Welding Clearance on Spot Weldability (점용접 간극이 용접성에 미치는 영향에 관한 연구)

  • 임재규;양승현;국중하
    • Journal of Welding and Joining
    • /
    • v.20 no.1
    • /
    • pp.55-61
    • /
    • 2002
  • The automobile is made up of about twenty thousand parts. Some parts are formed by pressing and combined by spot welding. Among them, steel palate of fuel tank is formed in the metal mold and bending parts are jointed by spot and seam welding. To find weldability conditions of spot welding, clearance between two welding steel plates was made and after spot welding, weldability is evaluated by means of tensile shear load, nugget size and shape. Specimen used in this study was a mild steel of 1.2mm thickness and electrode was Cu-Cr alloy of 6mm diameter. When spot welding started, the clearance of two steel plates was changed 0mm, 3mm and 5mm step by step. The fractured surface of specimen after this test was observed by Optical Microscope to measure microstructure and nugget shape. When clearance of two specimen was 3mm and 5mm, strength and nugget size was decreased and nugget shape was not clear.

Development of Low-cost 3D Printing Bi-axial Pressure Sensor (저가형 3D프린팅 2축 압력 센서 개발)

  • Choi, Heonsoo;Yeo, Joonseong;Seong, Jihun;Choi, Hyunjin
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.152-158
    • /
    • 2022
  • As various mobile robots and manipulator robots have been commercialized, robots that can be used by individuals in their daily life have begun to appear. With the development of robots that support daily life, the interaction between robots and humans is becoming more important. Manipulator robots that support daily life must perform tasks such as pressing buttons or picking up objects safely. In many cases, this requires expensive multi-axis force/torque sensors to measure the interaction. In this study, we introduce a low-cost two-axis pressure sensor that can be applied to manipulators for education or research. The proposed system used three force sensitive resistor (FSR) sensors and the structure was fabricated by 3D printing. An experimental device using a load cell was constructed to measure the biaxial pressure. The manufactured prototype was able to distinguish the +-x-axis and the +-y-axis pressures.

An Experimental Study on the Ultimate Longitudinal Strength of Ship Structures Damaged due to Side Collision (충돌 손상된 선체구조의 최종 종강도에 관한 실험적 연구)

  • Lee, Tak-Kee;Rim, Chae-Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.85-90
    • /
    • 2008
  • Ships in bad weather conditions are likely to be subjected to accidental loads, such as high bending moment, collision, and grounding. Once she has damage to her hull, her ultimate strength will be reduced. This paper discusses an investigation of the effect of collision damage on the ultimate strength of a ship structure by performing a series of collapse tests. For the experiment, five box-girder models with stiffeners were prepared with a cross section of $720mm\;{\times}\;720mm$ and a length of 900mm. Of the five, one had no damage and four had an ellipse shaped damage area that represented the shape of the bulbous bow of a colliding ship. The amount of damage size was different between models. Among the damaged models, the damage in three of them was made by cutting the plate and stiffener, and in one by pressing to represent collision damage. Experiments were carried out under a pure bending load and the applied load and displacements were recorded. The ultimate strength was reduced as the damage size increased, as expected. The one with the largest amount of damage had damage to 30% of the depth, and its ultimate strength was reduced by 19% compared to the undamaged one. The pressed one has higher ultimate strength than those that were cut. This might be due to the fact that the plate around the pressed damage area contributes to the ultimate strength, whereas the cut one has no plate to contribute.

Optimal Stiffness Design of Self-Piercing Riveting's C-Frame for Multimaterial Joining (다종소재 접합을 위한 SPR(Self-Piercing Riveting)용 C-프레임 강성 최적설계)

  • Shin, Chang-Yeul;Lee, Jae-Jin;Mun, Ji-Hun;Kwon, Soon-Deok;Yang, Min-Seok;Lee, Jae-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.76-84
    • /
    • 2021
  • In this study, an optimal stiffness model of the C-frame, which was supporting the mold and tool load, was proposed to obtain quality self-piercing riveting (SPR) joining. First, the load path acting on the C-frame structure was identified using topology optimization. Then, a final suggested model was proposed based on the load path results. Stiffness and strength analyses were performed for a rivet pressing force of 7.3 [t] to compare the design performance of the final proposed model with that of the initial model. Moreover, to examine the reliability of continuous and repeated processes, vibration analysis was performed and the dynamic stiffness of the final proposed model was reviewed. Additionally, fatigue analysis was performed to ascertain the fatigue characteristics due to simple repetitive loading. Finally, stiffness test was performed for the final proposed model to verify the analysis results. The obtained results differed from the analysis result by 2.9%. Consequently, the performance of the final proposed model was superior to that of the initial model with respect to not only the SPR fastening quality but also the reliability of continuous and repetitive processes.