• Title/Summary/Keyword: Pressing Anode

Search Result 18, Processing Time 0.024 seconds

Effect of Fabrication Method of Anode on OCV in Enzyme Fuel Cells (효소연료전지의 Anode 제조조건이 OCV에 미치는 영향)

  • Kim, Young-Sook;Lee, Se-Hoon;Chu, Cheun-Ho;Na, Il-Chai;Lee, Ho;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.6-10
    • /
    • 2015
  • Enzyme fuel cells were composed of enzyme anode and PEMFC cathode. Enzyme anodes was fabricated by compression of a mixture of graphite particle, glucose oxidase as a enzyme and ferrocene as a mediator, and then coated with Nafion ionomer. Open circuit voltage (OCV) were measured with variation of anode manufacture factors, to find optimum condition of enzyme anode. Optimum pressure was 9.0 MPar for enzyme anode pressing process. Highest OCV was obtained at 60% graphite composition in enzyme anode. Optimum glucose concentration was 1.7mol/l in anode substrate solution and enzyme activity of anode was stable for 7 days.

Effect of Fabrication Method of Anode on Performance in Enzyme Fuel Cells (효소연료전지의 Anode 제조조건이 성능에 미치는 영향)

  • Lee, Se-Hoon;Hwang, Byung-Chan;Lee, Hye-Ri;Kim, Young-Sook;Chu, Cheun-Ho;Na, Il-Chai;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.667-671
    • /
    • 2015
  • Enzyme fuel cells were operated with cells composed of enzyme anode and PEMFC cathode. Enzyme anodes was fabricated by compression of a mixture of graphite particle, glucose oxidase(Gox) as a enzyme and ferrocene as a redox mediator, and then coated with Nafion ionomer solution. Performances of enzyme unit cell were measured with variation of anode manufacture factors, to find optimum condition of enzyme anode. Optimum pressure was 8.89MPa for enzyme anode pressing process. Highest power density was obtained at 60% graphite composition in enzyme anode. Optimum glucose concentration was 1.7 mol/l in anode substrate solution. The enzyme anode was stabilized by two times of deeping in Nafion solution for 1 sec.

Effects of the composition and the pressing rate of electrode on the internal resistance and the battery characteristic (전극 조성 및 압착율에 의한 내부저항과 전지특성)

  • 정재국;진봉수;문성인;윤문수;남효덕
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.421-424
    • /
    • 2000
  • We have examined the impedance characteristics and the rate characteristics of LPB. As results, the impedance of LPB decreased with increased pressing rate of electrodes, adding amounts of PVdF and VGCF. And the rate characteristics of LPB increased with the a increase of pressure-rate, PVdF and VGCF contents. The rate characteristics of LPB was improved by pressing of electrode and adding of VGCF content. And specific capacity of anode was increased with adding amounts of PVdF. Higher pressing rate of electrodes, higher adding amounts of PVdF and VGCF was necessitated good rate characteristics for lithium polymer battery.

  • PDF

Effect of Fabrication Method of Cathode on OCV in Enzyme Fuel Cells (효소연료전지의 Cathode 제조조건이 OCV에 미치는 영향)

  • Lee, Se-Hoon;Kim, Young-Sook;Chu, Cheun-Ho;Na, Il-Chai;Lee, Jung-Hoon;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.171-174
    • /
    • 2016
  • Enzyme fuel cells were composed of enzyme cathode and PEMFC anode. Enzyme cathode was fabricated by compression of a mixture of graphite particle, laccase as a enzyme and ABTS as a redox mediator, and then coated with Nafion ionomer. Open circuit voltage (OCV) were measured with variation of cathode manufacture factors, to find optimum condition of enzyme cathode. Optimum pressure was 4.0 bar for enzyme cathode pressing process. Highest OCV was obtained at 95% graphite composition in enzyme cathodee. Optimum glucose concentration was 0.4 mol/l in cathode substrate solution.

Power Generating Characteristics of Anode-Supported SOFC fabricated by Uni-Axial Pressing and Screen Printing (일축가압/스크린인쇄 공정에 의해 제조된 음극지지형 SOFC의 출력특성)

  • 정화영;노태욱;김주선;이해원;고행진;이기춘;이종호
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.6
    • /
    • pp.456-463
    • /
    • 2004
  • To enhance the performance of anode-supported SOFC, single cell fabrication procedure was changed for better and resulting power generating characteristics of single cell were investigated. Liquid condensation process was employed for the granulation of NiO/YSZ powder mixture and the produced powder granules were compacted into anode green substrate by uni-axial pressing. YSZ electrolyte was printed on green substrate via screen-printing method and co-fired at 1400$^{\circ}C$ for 3 h. LSM/YSZ composite cathode of which the composition and heat treatment condition was adjusted to minimize the polarization#resistance with AC-impedance spectroscopy, was screen printed. The final single cell size from this multi-step procedure was 5${\times}$5 $\textrm{cm}^2$ and 10${\times}$10 $\textrm{cm}^2$. The maximum power densities of 5${\times}$5 and 10${\times}$10 single cells were about 0.45 W/$\textrm{cm}^2$ and 0.22 W/$\textrm{cm}^2$ at 800$^{\circ}C$, which are two times superior than those from single cells fabricated by the conventional process in previous our work.

A study on the fabrication of porous cermet electrode for molten carbonate fuel cell anode (용융탄산염 연료전지 양극용 다공성 cermet 전극제조에 관한 연구)

  • Lee, K. H.;Chang, D. Y.;Kim, M.;Kang, S. G.
    • Journal of the Korean institute of surface engineering
    • /
    • v.26 no.6
    • /
    • pp.291-298
    • /
    • 1993
  • In order to substitute for porous nickel anode in Molten Carbonate Fuel Cell(MCFC), porous cermet elec-trode was fabricated with Ni and Ni-P coated ceramic powder. Ni and Ni-P were coated by electroless plat-ing method in the nickel solution containing of hydrazine and sodium hypophosphate as a reducing agent. The plating solution was stirred by air and mechanical agitator. Ultrasonic irradiation was applied to the plating bath to improved the effect of agitation and coating speed. Electorde was formed by pressing method and doc-tor blade method followed by sinterd at$ 800^{\circ}C$ for 6 hours in H2 environment. Anode performance test carried out by potentiodynamic polarization technique in the MCFC operating condition and 154-161mA/$\textrm{cm}^2$ as ob-tained as a anode current density at the+100mV overpotential.

  • PDF

Effect of Thermal Pressing Temperature on the Mechanical and Material Properties of Electro-spun Polyacrylonitrile Nano-fibrous Separator (열압착 온도가 전기방사 Polyacrylonitrile 분리막의 기계적 강도 및 물성치에 미치는 영향)

  • Kim, Minchoel;Ko, Tae Jo;Arifeen, Waqas Ul;Dong, Ting
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.4
    • /
    • pp.109-116
    • /
    • 2019
  • The mechanical deformation of a battery separator causes internal short-circuiting of the cathode - anode, which directly affects the explosion/ignition of batteries. To increase the mechanical properties of the separator fabricated by electro-spinning, use of a thermal pressing method is inevitable. Therefore, this research aims to maximize the mechanical strength of a porous separator by finding the proper thermal press temperatures given to Electro-spun Polyacrylonitrile (PAN) nanofibers. The different thermal press temperatures $25^{\circ}C$, $50^{\circ}C$, $75^{\circ}C$, and $100^{\circ}C$ were applied to the electro-spun fiber at 30 MPa pressure for one hour. The higher the temperature, the higher the resultant tensile strength; however, a higher temperature also lowered the strain and porosity. Thus, the membrane thermal pressed at $50^{\circ}C$ showed the best mechanical properties and the second highest porosity. Using the data, $50^{\circ}C$ was judged as the best thermal pressing temperature in terms of performance.

Optimization of anode and electrolyte microstructure for Solid Oxide Fuel Cells (고체산화물 연료전지 연료극 및 전해질 미세구조 최적화)

  • Noh, Jong Hyeok;Myung, Jae-ha
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.525-530
    • /
    • 2019
  • The performance and stability of solid oxide fuel cells (SOFCs) depend on the microstructure of the electrode and electrolyte. In anode, porosity and pore distribution affect the active site and fuel gas transfer. In an electrolyte, density and thickness determine the ohmic resistance. To optimizing these conditions, using costly method cannot be a suitable research plan for aiming at commercialization. To solve these drawbacks, we made high performance unit cells with low cost and highly efficient ceramic processes. We selected the NiO-YSZ cermet that is a commercial anode material and used facile methods like die pressing and dip coating process. The porosity of anode was controlled by the amount of carbon black (CB) pore former from 10 wt% to 20 wt% and final sintering temperature from $1350^{\circ}C$ to $1450^{\circ}C$. To achieve a dense thin film electrolyte, the thickness and microstructure of electrolyte were controlled by changing the YSZ loading (vol%) of the slurry from 1 vol% to 5 vol. From results, we achieved the 40% porosity that is well known as an optimum value in Ni-YSZ anode, by adding 15wt% of CB and sintering at $1350^{\circ}C$. YSZ electrolyte thickness was controllable from $2{\mu}m$ to $28{\mu}m$ and dense microstructure is formed at 3vol% of YSZ loading via dip coating process. Finally, a unit cell composed of Ni-YSZ anode with 40% porosity, YSZ electrolyte with a $22{\mu}m$ thickness and LSM-YSZ cathode had a maximum power density of $1.426Wcm^{-2}$ at $800^{\circ}C$.

Cell Design for Mixed Gas Fuel Cell (혼합가스 주입형 연료전지를 위한 전지 디자인)

  • Park, Byung-Tak;Yoon, Sung Pil
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12 s.283
    • /
    • pp.860-864
    • /
    • 2005
  • In this study, we fabricated honeycomb type Mixed-Gas Fuel Cell (MGFC) which has advantages of stacking to the axial direction and increasing volume power density. Honeycomb-shaped anode with four channels was prepared by dry pressing method. Two alternative channels were coated with electrolyte and cathode slurry in order to make cathodic reaction sites and the others were filled with partial oxidation (POX) catalyst to increase fuel conversion. Furthermore we employed the sol-gel technique which can increase cell performance and decrease carbon coking.