• Title/Summary/Keyword: Pressed ceramic

Search Result 208, Processing Time 0.026 seconds

Effect of Grain Boundary Composition on Microstructure and Mechanical Properties of Silicon Carbide (입계상 조성이 탄화규소의 미세구조와 기계적 특성에 미치는 영향)

  • 김재연;김영욱;이준근
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.9
    • /
    • pp.911-916
    • /
    • 1998
  • By using {{{{ { { {Y }_{3 }Al }_{5 }O }_{12 } }} (YAG) and SiO2 as sintering additives the effect of the composition of sintering ad-ditives on microstructure and mechanical properties of the hog-pressed and subsequently annealed SiC ma-terials were investigated. Microstructures of sintered and annealed materials were strongly dependent onthe composition of sintering additives. The average diameter and volume fraction of elongated grains in an-nealed materials increased with the SiO2/YAg ratio while the fracture toughness increased with the SiO2/YAg ratio. The average MPa.{{{{ { m}^{1/2 } }} respectively. Typical strength and fracture toughness of an annealed material with SiO2/YAg ra-tionof 0.67 were 371 MPa and 5.6 MPa.{{{{ { m}^{1/2 } }} respectively.

  • PDF

Studies on the Fine Sintered Mullite(II) (파인 물라이트 소결체에 대한 연구(II))

  • 김경용;김윤호;강선모;김병호;김석수
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.5
    • /
    • pp.631-636
    • /
    • 1989
  • Submicron high-purity mullite powder was prepared by a colloidal sol-gel route. Boehmite and silica were the starting materials. 2wt% $\alpha$-Al2O3 or ZrO2 was used as a seeding material. The gelled powder was calcined at 130$0^{\circ}C$ for 100min and attrition milled for 3hrs. The mullite powder obtained was composed of submicrometer and uniform particles with a narrow size distribution. It was hot-pressed at 1$600^{\circ}C$ for 1hr under 10MPa or was sintered at 1$650^{\circ}C$ for 4hrs. The bulk densities of the products made by both processes were 3.14 and 3.12g/㎤. the mechanical, thermal and electrical properties of the sintered mullite were characterized by bending strength, thermal expansion coefficient, thermal conductivity, dielectric constant and dielectric loss, etc.

  • PDF

A Study on the Creep Behavior and Failure Mechanism of the $SiC_t/Si_3N_4$ Ceramic Composite ($SiC_t/Si_3N_4$ 세라믹 복합재료의 크리프 거동 및 파손 메카니즘에 관한 연구)

  • 박용환
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.4
    • /
    • pp.131-136
    • /
    • 1998
  • The creep behavior and failure mechanism of the 30 vol% hot-pressed $SiC_t/Si_3N_4$ ceramic composite was experimentally investigated at $1200^{\circ}C$ and at various stress levels in air. The creep threshold stress for zero creep rate after 100 hr was found to be approximately 60 MPa. The stress exponent was estimated to be n~1, which suggests that fiber-reinforcement reduced the stress sensitivity of the HPSN matrix with the stress exponent of 2. The tertiary stage leading to creep rupture was found at 250 MPa but was very short. The microstructure of the crept specimen showed random fiber fracture and no matrix cracking. Interfacial debonding was absent.

  • PDF

SiC-Whisker Dispersion and Mechanical Properties of $Al_2O_3-SiC Whisker$ Whisker Composite (SiC Whisker의 분산과 $Al_2O_3-SiC Whisker$ 복합재료의 기계적 성질)

  • 정수종;이주완;김득중;신유선;강석중
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.6
    • /
    • pp.492-498
    • /
    • 1993
  • The pretreatment condition for uniform distribution of SiC whisker in A2O3-SiCw composites has been determined and the mechanical properties of the composites with various whisker contents have been measured. Good dispersion of the whisker can be obtained in a solution of pH=10.45 by ball milling and ultrasonic treatment. The relative density of hot pressed composites decreases with the whisker content up to 40vol%, but is found to be satisfactory, over 98% for all samples. The mechanical property of the composites is sensitive to the whisker dispersion. Uniform distributjion of the whisker is critical in order to guarantee good mechanical property.The samples containing 20~30vol% whisker show the best mechanical property within the studied range.

  • PDF

Fabrication of Porous Ceramics and Multilayered Ceramics Containing Porous Layers; II. Heterogeneous Laminates (다공성 세라믹스와 다공질층을 포함하는 적층세라믹스의 제조에 관한 연구;II. 불균일 적층소결체)

  • 이해원;윤복규;송휴섭
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.11
    • /
    • pp.1323-1329
    • /
    • 1994
  • Tape casting and lamination were used to produce heterogeneous laminates with alternating layers of different porosity and homogeneous laminates with component layers of the same porosity. The pore structure was investigated for heterogeneous laminates, and bend strength was measured for comparison with that of homogeneous laminates. For a reference, strength measurement was made for the porous body fabricated by sintering samples dry-pressed at low pressure with spray-dried granules. Strength increase, in the range 50~120 MPa, was achieved in the presence of the surface dense layer, while extensive delamination, presumably responsible for enhanced fracture toughness, took place through the internal porous layer.

  • PDF

Phase Transformation and Mechanical Properties on Sintering Temperature of $\alpha$-SiC Manufactured by Pressureless Sintering ($\beta$-SiC의 상압소결시 소결온도에 따른 상전이와 기계적 특성 변화)

  • Ju, Jin-Young;Shin, Yong-Deok
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1433-1435
    • /
    • 2001
  • The mechanical and phase transformation of the cold isostatically pressed $\beta$-SiC ceramic were investigated as a function of the sintering temperature. The result of phase analysis revealed 6H, 4H, 3C and phase transformation between 3C and 4H showed over 2000$^{\circ}C$ and the $\beta$ ${\rightarrow}$ $\alpha$ phase transformation was in saturation at 2200$^{\circ}C$. The relative density and the mechanical properties of $\alpha$-SiC ceramic was increased with increased sintering temperature. The flexural strength showed the highest value of 230 MPa at 2200$^{\circ}C$. This reason is because crack was propagated through surface flaw. The fracture toughness showed the highest value of 4.2 $MPa{\cdot}m^{1/2}$ at 2200$^{\circ}C$.

  • PDF

Fabrication of Undoped PbTiO3 Ceramics via Sol-Gel Processing (Sol-Gel Processing에 의한 순수 $PbTiO_3$ Ceramics 제조)

  • 김선욱;윤만순;임종인;김성숭;김남흥
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.3
    • /
    • pp.211-215
    • /
    • 1992
  • Crack free PbTiO3 ceramics were produced by sol-gel processing using alkoxide, which has not been reported to be successful. The PbTiO3 gels were prepared from Ti alkoxide and lead acetate without any dopants. They were calcined at $600^{\circ}C$ and miled to produce fine PbTiO3 powder. It was pressed into discs and they were sintered at 110$0^{\circ}C$ for a few hours. The sintered ceramics were relativley hard and dense as having about 96% of theoretical density of PbTiO3. Fabrication of pure PbTiO3 ceramics by sol-gel processing is possibly due to their small grain size and uniform distribution of residual stress created during cubic-tetragonal transition over large number of small grains in fine grain PbTiO3 ceramics.

  • PDF

Effect of Solid Loading and Lamination Process on the Properties of Ni-Zn Ferrite Made by Tape Casting Method (분말의 함량 및 적층공정이 Tape Casting법으로 제조된 Ni-Zn Ferrite의 물성에 미치는 영향)

  • 이창호;김경용;이창호;김경용
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.6
    • /
    • pp.595-600
    • /
    • 1994
  • Ni0.3Zn0.7Fe2O4 ferrite specimens were fabricated by dry pressing and tape casting method. The properties of each specimen were measured and compared. In order to design and manufacture the chip devices effectively, one important criterion can be that the sintered density of the laminated body should approach close to that of the dry pressed body which is regarded as standard. This requirement could be satisfied by controlling the solid loading of the ferrite sheet, lamination temperature and pressure. Using the optimum conditions (solid loading 55 wt%, lamination temperature 6$0^{\circ}C$, lamination pressure 400 kg/$\textrm{cm}^2$, sintered at 125$0^{\circ}C$ 2h) a sintered ferrite, with the density of 5.18g/㎤ and permeability of 1390 at 0.5 MHz, were obtained.

  • PDF

Preparation of Alumina Ceramics by Pressureless Powder Packing Forming Method (II) Characterization of Sintered Body Fabricated by Pressureless Powder Packing Forming Method (무가압 분말 충전 성형법을 이용한 알루미나 세라믹스의 제조 (II) 무가압 분말 충전 성형법에 의해 제조된 소결체 특성 관찰)

  • 박정형;성재석
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.1
    • /
    • pp.113-119
    • /
    • 1995
  • The green body was fabricated by a new forming method, pressureless powder packaing forming method, and the characteristics of sintered specimen were investigated. It was found that alumina ceramics prepared by the present method showed porous structure with narrow pore size distribution, and in case of abrasive powder sintered body, compared with dry-pressed specimen, had the nearly same density. Especially, the specimen prepared with spray-dried granules showed the characteristic that granules were not either deformed or fractured during forming and sintering process. Therefore, it was found that this new forming method was effective method in fabrication of porous ceramics on account of easy control of porosity and pore size and its high thermal stability.

  • PDF

A Study on Zirconia/Metal Functionally Gradient Materials by Sintering Method(II) (소결법에 의한 $ZrO_2/Metal$계 경사기능재료에 관한 연구(II))

  • 정연길;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.1
    • /
    • pp.120-130
    • /
    • 1995
  • To analyze the mechanical property and the residual stress in functionally gradient materials(FGMs), disctype TZP/Ni-and TZP/SUS304-FGM were hot pressed using powder metallurgy compared with directly bonded materials which were fabricated by the same method. The continuous interface and the microstructure of FGMs were characterized by EPMA, WDS, optical microscope and SEM. By fractography, the fracture behavior of FGMs was mainly influenced by the defects which originated from the fabrication process. And the defectlike cracks in the FGMs induced by the residual stress have been shown to cause failure. This fact has well corresponded to the analysis of the residual stress distribution by Finite Element Method (FEM). The residual stress generated on the interface (between each layer, and matrix and second phase, respectively) were dominantly influenced on the sintering temperature and the material constants. As a consequence, the interfacial stability and the relaxation of residual stress could be obtained through compositional gradient.

  • PDF