• Title/Summary/Keyword: Press working

Search Result 321, Processing Time 0.031 seconds

A Qualitative Study on Market Orientation of New Designer Brand (신진 디자이너 브랜드의 시장 지향성 고찰)

  • Yun, So Jung;Choo, Ho Jung
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.39 no.6
    • /
    • pp.838-851
    • /
    • 2015
  • This study explores the level of designer brands' market oriented attitude through a conceptual framework of market orientation. Designer brands have rapidly increased in the Korean fashion market with a competitive environment that pushes designers to improve market oriented attitudes and strategy. Designers working for 20 brands that the government designated as 'promising creative designer brands' were invited for in-depth interviews, 19 designers from 18 brands participated in this study. The generation of market intelligence that composes market orientation meant that the designers were confirmed to collecting different types of information according to information sources. They showed interest in collecting information on the exploration of design trends from overseas designers as well as operational and managerial information from domestic designers. Fashion-related stakeholders mainly collected feedback on design concepts from the press and public institutions. They collected customer feedback from buyers; however, appropriate feedback was inadequate. Designers generally appeared to place less value on the collection of customer responses and opinions; however, two groups of designers showed customer-oriented attitudes according to accumulated experience. The market-oriented attitude of top designers had an important role in designer brands; consequently, top designers should be properly trained to improve market-oriented attitudes to increase market performance.

A new approach to working coil design for a high frequency full bridge series resonant inverter fitted contactless induction heater

  • Dhar, Sujit;Dutta, Biswajit;Ghoshroy, Debasmita;Roy, Debabrata;Sadhu, Pradip Kumar;Ganguly, Ankur;Sanyal, Amar Nath;Das, Soumya
    • Advances in Computational Design
    • /
    • v.2 no.4
    • /
    • pp.283-291
    • /
    • 2017
  • High frequency full bridge series resonant inverters have become increasingly popular among power supply designers. One of the most important parameter for a High Frequency Full Bridge Series Resonant Inverter is optimal coil design. The optimal coil designing procedure is not a easy task. This paper deals with the New Approach to Optimal Design Procedure for a Real-time High Frequency Full Bridge Series Resonant Inverter in Induction Heating Equipment devices. A new design to experimental modelling of the physical properties and a practical power input simulation process for the non-sinusoidal input waveform is accepted. The design sensitivity analysis with Levenberg-Marquardt technique is used for the optimal design process. The proposed technique is applied to an Induction Heating Equipment devices model and the result is verified by real-time experiment. The main advantages of this design technique is to achieve more accurate temperature control with a huge amount of power saving.

Intelligent hybrid controlled structures with soil-structure interaction

  • Zhang, X.Z.;Cheng, F.Y.;Lou, M.L.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.573-591
    • /
    • 2004
  • A hybrid control system is presented for seismic-resistant building structures with and without soil-structure interaction (SSI). The hybrid control is a damper-actuator-bracing control system composed of passive and active controllers. An intelligent algorithm is developed for the hybrid system, in which the passive damper is designed for minor and moderate earthquakes and the active control is designed to activate when the structural response is greater than a given threshold quantity. Thus, the external energy for active controller can be optimally utilized. In the control of a multistory building, the controller placement is determined by evaluating the optimal location index (OLI) calculated from six earthquake sources. In the study, the soil-structure interaction is considered both in frequency domain and time domain analyses. It is found that the interaction can significantly affect the control effectiveness. In the hybrid control algorithm with intelligent strategy, the working stages of passive and active controllers can be different for a building with and without considering SSI. Thus SSI is essential to be included in predicting the response history of a controlled structure.

Variable-node element families for mesh connection and adaptive mesh computation

  • Lim, Jae Hyuk;Sohn, Dongwoo;Im, Seyoung
    • Structural Engineering and Mechanics
    • /
    • v.43 no.3
    • /
    • pp.349-370
    • /
    • 2012
  • Variable-node finite element families, termed (4 + k + l + m + n)-node elements with an arbitrary number of nodes (k, l, m, and n) on each of their edges, are developed based on the generic point interpolation with special bases having slope discontinuities in two-dimensional domains. They retain the linear interpolation between any two neighboring nodes, and passes the standard patch test when subdomain-wise $2{\times}2$ Gauss integration is employed. Their shape functions are automatically generated on the master domain of elements although a certain number of nodes are inserted on their edges. The elements can provide a flexibility to resolve nonmatching mesh problems like mesh connection and adaptive mesh refinement. In the case of adaptive mesh refinement problem, so-called "1-irregular node rule" working as a constraint in performing mesh adaptation is relaxed by adopting the variable-node elements. Through several examples, we show the performance of the variable-node finite elements in terms of accuracy and efficiency.

Robust finite element model updating of a large-scale benchmark building structure

  • Matta, E.;De Stefano, A.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.3
    • /
    • pp.371-394
    • /
    • 2012
  • Accurate finite element (FE) models are needed in many applications of Civil Engineering such as health monitoring, damage detection, structural control, structural evaluation and assessment. Model accuracy depends on both the model structure (the form of the equations) and the model parameters (the coefficients of the equations), and can be generally improved through that process of experimental reconciliation known as model updating. However, modelling errors, including (i) errors in the model structure and (ii) errors in parameters excluded from adjustment, may bias the solution, leading to an updated model which replicates measurements but lacks physical meaning. In this paper, an application of ambient-vibration-based model updating to a large-scale benchmark prototype of a building structure is reported in which both types of error are met. The error in the model structure, originating from unmodelled secondary structural elements unexpectedly working as resonant appendages, is faced through a reduction of the experimental modal model. The error in the model parameters, due to the inevitable constraints imposed on parameters to avoid ill-conditioning and under-determinacy, is faced through a multi-model parameterization approach consisting in the generation and solution of a multitude of models, each characterized by a different set of updating parameters. Results show that modelling errors may significantly impair updating even in the case of seemingly simple systems and that multi-model reasoning, supported by physical insight, may effectively improve the accuracy and robustness of calibration.

Experimental investigations on composite slabs to evaluate longitudinal shear strength

  • Saravanan, M.;Marimuthu, V.;Prabha, P.;Arul Jayachandran, S.;Datta, D.
    • Steel and Composite Structures
    • /
    • v.13 no.5
    • /
    • pp.489-500
    • /
    • 2012
  • Cold-formed steel profile sheets acting as decks have been popularly used in composite slab systems in steel structural works, since it acts as a working platform as well as formwork for concreting during construction stage and also as tension reinforcement for the concrete slab during service. In developing countries like India, this system of flooring is being increasingly used due to the innate advantage of these systems. Three modes of failure have been identified in composite slab such as flexural, vertical shear and longitudinal shear failure. Longitudinal shear failure is the one which is difficult to predict theoretically and therefore experimental methods suggested by Eurocode 4 (EC 4) of four point bending test is in practice throughout world. This paper presents such an experimental investigation on embossed profile sheet acting as a composite deck where in the longitudinal shear bond characteristics values are evaluated. Two stages, brittle and ductile phases were observed during the tests. The cyclic load appears to less effect on the ultimate shear strength of the composite slab.

Taming of large diameter triaxial setup

  • Nair, Asha M.;Madhavi Latha, G.
    • Geomechanics and Engineering
    • /
    • v.4 no.4
    • /
    • pp.251-262
    • /
    • 2012
  • Triaxial tests are essential to estimate the shear strength properties of the soil or rock. Normally triaxial tests are carried out on samples of 38 mm diameter and 76 mm height. Granular materials, predominantly used in base/sub-base construction of pavements or in railways have size range of 60-75 mm. Determination of shear strength parameters of those materials can be made possible only through triaxial tests on large diameter samples. This paper describes a large diameter cyclic triaxial testing facility set up in the Geotechnical Engineering lab of Indian Institute of Science. This setup consists of 100 kN capacity dynamic loading frame, which facilitates testing of samples of up to 300 mm diameter and 600 mm height. The loading ram can be actuated up to a maximum frequency of 10 Hz, with maximum amplitude of 100 mm. The setup is capable of carrying out static as well as dynamic triaxial tests under isotropic, anisotropic conditions with a maximum confining pressure of 1 MPa. Working with this setup is a difficult task because of the size of the sample. In this paper, a detailed discussion on the various problems encountered during the initial testing using the equipment, the ideas and solutions adopted to solve them are presented. Pilot experiments on granular sub-base material of 53 mm down size are also presented.

Development and experimental study on cable-sliding modular expansion joints

  • Gao, Kang;Yuan, Wan C.;Dang, Xin Z.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.6
    • /
    • pp.795-806
    • /
    • 2017
  • According to the characteristics of continuous beam bridges, the relative displacement is too large to collision or even girder falling under earthquakes. A device named Cable-sliding Modular Expansion Joints(CMEJs) that can control the relative displacement and avoid collision under different ground motions is proposed. Working principle and mechanical model is described. This paper design the CMEJs, establish the restoring force model, verify the force model of this device by the pseudo-static tests, and describe and analyze results of the tests, and then based on a triple continuous beam bridge that has different heights of piers, a 3D model with or without CMEJs were established under Conventional System (CS) and Seismic Isolation System (SIS). The results show that this device can control the relative displacement and avoid collisions. The combination of isolation technology and CMEJs can be more effective to achieve both functions, but it need to take measures to prevent girder falling due to the displacement between pier and beam under large earthquakes.

Continuous deformation measurement for track based on distributed optical fiber sensor

  • He, Jianping;Li, Peigang;Zhang, Shihai
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.1
    • /
    • pp.1-12
    • /
    • 2020
  • Railway tracks are the direct supporting structures of the trains, which are vulnerable to produce large deformation under the temperature stress or subgrade settlement. The health status of track is critical, and the track should be routinely monitored to improve safety, lower the risk of excess deformation and provide reliable maintenance strategy. In this paper, the distributed optical fiber sensor was proposed to monitor the continuous deformation of the track. In order to validate the feasibility of the monitoring method, two deformation monitoring tests on one steel rail model in laboratory and on one real railway tack in outdoor were conducted respectively. In the model test, the working conditions of simply supported beam and continuous beam in the rail model under several concentrated loads were set to simulate different stress conditions of the real rail, respectively. In order to evaluate the monitoring accuracy, one distributed optical fiber sensor and one fiber Bragg grating (FBG) sensor were installed on the lower surface of the rail model, the strain measured by FBG sensor and the strain calculated from FEA were taken as measurement references. The model test results show that the strain measured by distributed optical fiber sensor has a good agreement with those measured by FBG sensor and FEA. In the outdoor test, the real track suffered from displacement and temperature loads. The distributed optical fiber sensor installed on the rail can monitor the corresponding strain and temperature with a good accuracy.

Defect Monitoring In Railway Wheel and Axle

  • Kwon, Seok-Jin;Lee, Dong-Hyoung;You, Won-Hee
    • International Journal of Railway
    • /
    • v.1 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • The railway system requires safety and reliability of service of all railway vehicles. Suitable technical systems and working methods adapted to it, which meet the requirements on safety and good order of traffic, should be maintained. For detection of defects, non-destructive testing methods-which should be quick, reliable and cost-effective - are most often used. Since failure in railway wheelset can cause a disaster, regular inspection of defects in wheels and axles are mandatory. Ultrasonic testing, acoustic emission and eddy current testing method and so on regularly check railway wheelset in service. However, it is difficult to detect a crack initiation clearly with ultrasonic testing due to noise echoes. It is necessary to develop a non-destructive technique that is superior to conventional NDT techniques in order to ensure the safety of railway wheelset. In the present paper, the new NDT technique is applied to the detection of surface defects for railway wheelset. To detect the defects for railway wheelset, the sensor for defect detection is optimized and the tests are carried out with respect to surface and internal defects each other. The results show that the surface crack depth of 1.5 mm in press fitted axle and internal crack in wheel could be detected by using the new method. The ICFPD method is useful to detect the defect that initiated in railway wheelset.

  • PDF