Browse > Article
http://dx.doi.org/10.12989/sem.2012.43.3.349

Variable-node element families for mesh connection and adaptive mesh computation  

Lim, Jae Hyuk (Satellite Structure Department, Korea Aerospace Research Institute (KARI))
Sohn, Dongwoo (Division of Mechanical and Energy Systems Engineering, College of Engineering, Korea Maritime University)
Im, Seyoung (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST))
Publication Information
Structural Engineering and Mechanics / v.43, no.3, 2012 , pp. 349-370 More about this Journal
Abstract
Variable-node finite element families, termed (4 + k + l + m + n)-node elements with an arbitrary number of nodes (k, l, m, and n) on each of their edges, are developed based on the generic point interpolation with special bases having slope discontinuities in two-dimensional domains. They retain the linear interpolation between any two neighboring nodes, and passes the standard patch test when subdomain-wise $2{\times}2$ Gauss integration is employed. Their shape functions are automatically generated on the master domain of elements although a certain number of nodes are inserted on their edges. The elements can provide a flexibility to resolve nonmatching mesh problems like mesh connection and adaptive mesh refinement. In the case of adaptive mesh refinement problem, so-called "1-irregular node rule" working as a constraint in performing mesh adaptation is relaxed by adopting the variable-node elements. Through several examples, we show the performance of the variable-node finite elements in terms of accuracy and efficiency.
Keywords
variable-node finite elements; transition elements; nonmatching meshes; adaptive mesh refinement; 1-irregular node rule; mesh connection;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Aminpour, M.A., Ransom, J.B. and McCleary, S.L. (1995), "A coupled analysis method for structures with independently modeled finite element sub-domains", Int. J. Numer. Meth. Eng., 38, 3695-3718.   DOI   ScienceOn
2 Cho, Y.S., Jun, S., Im, S. and Kim, H.G. (2005), "An improved interface element with variable nodes for nonmatching finite element meshes", Comput. Meth. Appl. Mech. Eng., 194, 3022-3046.   DOI   ScienceOn
3 Cho, Y.S. and Im, S. (2006a), "MLS-based variable-node elements compatible with quadratic interpolation Part I: formulation and application for non-matching meshes", Int. J. Numer. Meth. Eng., 65, 494-516.   DOI   ScienceOn
4 Cho, Y.S. and Im, S. (2006b), "MLS-based variable-node elements compatible with quadratic interpolation Part II: application for finite crack element", Int. J. Numer. Meth. Eng., 65, 517-547.   DOI   ScienceOn
5 Choi, C.K. and Lee, N.H. (1993), "Three dimensional transition solid elements for adaptive mesh gradation", Struct. Eng. Mech., 1, 61-74.   DOI
6 Choi, C.K. and Lee, N.H. (1996), "A 3-D adaptive mesh refinement using variable-node solid transition elements", Int. J. Numer. Meth. Eng., 39, 1585-1606.   DOI
7 Choi, C.K., Lee, E.J. and Yu, W.J. (2004), "Adaptive mesh refinement/recovery strategy for FEA", Struct. Eng. Mech., 17, 379-391.   DOI   ScienceOn
8 Choi, C.K. and Park, Y-M. (1992), "An adaptive h-refinement using transition element for plate bending problems", Int. J. Numer. Meth. Eng., 35, 145-163.   DOI
9 Christie, I. and Hall, C. (1984), "The maximum principle for bilinear elements", Int. J. Numer. Meth. Eng., 20, 549-553.   DOI   ScienceOn
10 Flemisch, B., Puso, M.A. and Wohlmuth, B.I. (2005), "A new dual mortar method for curved interfaces: 2D elasticity", Int. J. Numer. Meth. Eng., 63, 813-832.   DOI   ScienceOn
11 Floater, M.S. (2003), "Mean value coordinates", Comput. Aid. Geom. Des., 20, 19-27.   DOI   ScienceOn
12 Gupta, A.K. (1978), "A finite element for transition from a fine to a coarse grid", Int. J. Numer. Meth. Eng., 12, 35-45.   DOI   ScienceOn
13 Hinton, E. and Campbell, J.S. (1974), "Local and global smoothing of discontinuous finite element function using a least square method", Int. J. Numer. Meth. Eng., 8, 461-480.   DOI   ScienceOn
14 Hughes, T.J.R. (1989), The Finite Element Method: Linear Static and Dynamics Finite Element Analysis, Prentice Hall: Englewood Cliffs, NJ.
15 Kim, H.G. (2002), "Interface element method (IEM) for a partitioned system with non-matching interfaces", Comput. Meth. Appl. Mech. Eng., 191, 3165-3194.   DOI   ScienceOn
16 Kim, H.G. (2008), "Development of three-dimensional interface elements for coupling of non-matching hexahedral meshes", Comput. Meth. Appl. Mech. Eng., 197, 3870-3882.   DOI   ScienceOn
17 Kim, J.H., Lim, J.H., Lee, J.H. and Im, S. (2008), "A new computational approach to contact mechanics using variable-node finite elements", Int. J. Numer. Meth. Eng., 73, 1966-1988.   DOI   ScienceOn
18 Lim, J.H. and Im, S. (2007), "(4 + n)-noded moving least square (MLS)-based finite elements for mesh gradation", Struct. Eng. Mech., 25, 91-106.   DOI
19 Lim, J.H., Im, S. and Cho, Y.S. (2007a), "MLS (moving least square)-based finite elements for three-dimensional nonmatching meshes and adaptive mesh refinement", Comput. Meth. Appl. Mech. Eng., 196, 2216-2228.   DOI   ScienceOn
20 Lim, J.H., Im, S. and Cho, Y.S. (2007b), "Variable-node elements for nonmatching meshes by means of MLS (moving least-square) scheme", Int. J. Numer. Meth. Eng., 72, 835-857.   DOI   ScienceOn
21 Lo, S.H., Wu, D. and Sze, K.Y. (2010), "Adaptive meshing and analysis using transitional quadrilateral and hexahedral elements", Finite Elem. Anal. Des., 46, 2-16.   DOI   ScienceOn
22 Lim, J.H., Sohn, D., Lee, J.H. and Im, S. (2010), "Variable-node finite elements with smoothed integration techniques and their applications for multiscale mechanics problems", Comput. Struct., 88, 413-425.   DOI   ScienceOn
23 Liu, G.R., Dai, K.Y. and Nguyen, T.T. (2007), "A smoothed finite element method for mechanics problems", Comput. Mech., 39, 859-877.   DOI   ScienceOn
24 Lo, S.H., Wan, K.H. and Sze, K.Y. (2006), "Adaptive refinement analysis using hybrid-stress transition elements", Comput. Struct., 84, 2212-2230.   DOI   ScienceOn
25 Nguyen-Thoi, T., Liu, G.R. and Nguyen-Xuan, H. (2011), "An n-sided polygonal edge-based smoothed finite element method (nES-FEM) for solid mechanics", Int. J. Numer. Meth. Eng., 27, 1446-1472.
26 Park, K.C., Felippa, C.A. and Rebel, G. (2002), "A simple algorithm for localized construction of non-matching structural interfaces", Int. J. Numer. Meth. Eng., 53, 2117-2142.   DOI   ScienceOn
27 Puso, M.A. (2004), "A 3D mortar method for solid mechanics", Int. J. Numer. Meth. Eng., 59, 315-336.   DOI   ScienceOn
28 Sohn, D., Cho, Y.S. and Im, S. (2012), "A novel scheme to generate meshes with hexahedral elements and polypyramid elements: The carving technique", Comput. Meth. Appl. Mech. Eng., 201-204, 208-227.   DOI
29 Sohn, D., Lim, J.H., Cho, Y.S., Kim, J.H. and Im, S. (2011), "Finite element analysis of quasistatic crack propagation in brittle media with voids or inclusions", J. Comput. Phys., 230, 6866-6899.   DOI   ScienceOn
30 Timoshenko, S.P. and Goodier, J.N. (1970), Theory of Elasticity, McGraw-Hill, NY.
31 Varga, R.S. (1966), "On a discrete maximum principle", SIAM J. Numer. Anal., 3, 355-359.   DOI   ScienceOn
32 Wachspress, E.L. (1975), A Rational Finite Element Basis, Academic press, NY.
33 Zienkiewicz, O.C. and Zhu, J.Z. (1987), "A simple error estimator and adaptive procedure for practical engineering analysis", Int. J. Numer. Meth. Eng., 24, 337-357.   DOI   ScienceOn
34 Wu, D., Sze, K.Y. and Lo, S.H. (2008), "Two- and three-dimensional transition elements for adaptive mesh refinement analysis of elasticity problems", Int. J. Numer. Meth. Eng., 78, 587-630.