• Title/Summary/Keyword: Press roll

Search Result 104, Processing Time 0.027 seconds

Design of the anvil shape in sizing press for decrease of the defect generated width reduction (사이징 프레스에서 폭 압하 공정중 결함 감소를 위한 엔빌의 형상설계)

  • Lee S.H.;Kim D.H.;Byon S.M.;Park H.D.;Kim B.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.437-438
    • /
    • 2006
  • Generally, the vertical roll process is used to achieve extensive width reduction in hot strip mill. However, it is difficult to avoid the defects such as dog-bone and seam-defect. The sizing press has been developed in response to the defects mentioned above. Especially, this study is carried out to investigate the deformation of slab by two-step sizing press. The deformation behavior in the width sizing process is more favorable than that in conventional vertical rolling edger. The objective of this study is to determine the optimal anvil shape parameters in the sizing press with two-step die from the viewpoint of edge-seam length. In general, the edge-seam defect occurs parallel to the rolling direction at both edges in horizontal rolling process after sizing press. The optimal combination of the parameters is determined by FE-simulation and Artificial Neural Network (ANN). The slab deformation in sizing press with convex anvil is analyzed by FE-simulation. The most suitable profile of the anvil is also discussed fur the improvement of trimming loss because of the side seam defect by FE-simulation and ANN.

  • PDF

Korean fine blanking industries and technology development (국내 파인블랭킹 산업 현황과 기술 개발)

  • Kim, Jong-Deok
    • Design & Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.5-8
    • /
    • 2015
  • The company Daewoo Precision Industries imported fine blanking press of 40 tons from Switzerland with fine blanking tool in order to produce the fuse part of bomb in 1978 at first in Korea. About 1985 the first fine blanking tool for producing the door lock parts was manufactured in the company Gold Star (now LG). And then this technology was grown up with the growth of automobile industries in Korea. Now 31 companies are closely related to the fine blanking technology and there are total 146 fine blanking presses in Korea. The developments of fine blanking technology in industries have been oriented to the production of precise fine blanking parts, the reduction of die roll height on fine blanking parts, the production of complex fine blanking parts with progressive fine blanking tool including forming and forging technology, the production of high-strength steel fine blanking parts and so on. Some R&D activities in KITECH were introduced.

  • PDF

Evaluation of Forming Performance of TMC Steel Pipes & Tubes for Building Structure (건축구조용 TMC 강관의 가공성능 평가)

  • Im, Sung Woo;Kim, Jong Seong;Chang, In Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.43-49
    • /
    • 2004
  • With building structures becoming higher and having longer spans, new structural steel with better strength, thicker plate, and performance may be required rather than conventional structural steel. TMC steel is widely used in building structures largely due to its excellent seismic performance, superior weldability, and design strength that is not affected by plate thickness. To make use of TMC steel in pipe structures with large diameter and heavy wall, however, the this study, the degradation of material properties in submerged are welded SM520TMC steel pipes and tubes was evaluated using variable fabrication process and material change. Degradation test results showed that the yield and ultimate strength increased and elongation decreased regardless of the mode of fabrication, i.e., through roll bending or press forming, or steel used, i.e., domestic SM520TMC steel or SM520TMC steel from Japan.

Safety assessment of caisson transport on a floating dock by frequency- and time-domain calculations

  • Kang, H.Y.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.4 no.2
    • /
    • pp.99-115
    • /
    • 2014
  • When caissons are mounted on a floating transportation barge and towed by a tug boat in waves, motion of the floating dock creates inertia and gravity-induced slip forces on the caisson. If its magnitude exceeds the corresponding friction force between the two surfaces, a slip may occur, which can lead to an unwanted accident. In oblique waves, both pitch and roll motions occur simultaneously and their coupling effects for slip and friction forces become more complicated. With the presence of strong winds, the slip force can appreciably be increased to make the situation worse. In this regard, the safety of the transportation process of a caisson mounted on a floating dock for various wind-wave conditions is investigated. The analysis is done by both frequency-domain approach and time-domain approach, and their differences as well as pros and cons are discussed. It is seen that the time-domain approach is more direct and accurate and can include nonlinear contributions as well as viscous effects, which are typically neglected in the linear frequency-domain approach.

Study on the Continuous Forming of Natural Gas Hydrate Pellet using Twin Roll System (트윈롤 시스템을 이용한 천연가스 하이드레이트 펠릿의 연속성형)

  • Lee, Yun-Hu;Kim, Heung-Soo;Koh, Bong-Hwan;Song, Myung-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.152-157
    • /
    • 2012
  • This study investigates compressive strength of ice pellet strip which is potential medium for Natural Gas Hydrate(NGH) extruded from die holes of Twin-roll Press for Continuous Pelletizing(TPCP). Recently, the prototype of TPCP is newly developed where ice powder is continuously fed and extruded into strip-type pellet between twin rolls. The system is specifically designed for future expansion towards mass-production of ice pellet strips or solid form of natural gas hydrate. It is shown that the compressive strength of pellet strip heavily depends on factors in extrusion process such as disk size, surface smoothness, ring size, taper shape, feeding mechanism, and rotational speed. Here, the mechanism of TPCP, along with compressive strength of pellets is discussed in terms of its feasibility for producing NGH pellets in the future.

Fabrication and Performance Evaluation of Carbon Fiber/Graphene Nano-Platelets Composites for Wear Resistance Application (GNP 첨가 탄소복합재료의 제조 및 마모 특성 평가)

  • Park, Seung-Bhin;Park, Jin-Chul;Cho, Chang-Woo;Song, Jung-Il
    • Korean Journal of Materials Research
    • /
    • v.25 no.10
    • /
    • pp.531-536
    • /
    • 2015
  • GNPs have several excellent mechanical properties including high strength, a good young's modulus, thermal conductivity, corrosion resistance, electronic shielding, etc. In this study, CF/GNP/Epoxy composites were manufactured using GNP weight ratios of 0.15 wt%, 0.3 wt%, 0.5 wt%, 0.7 wt% and 1 wt%. The composites were manufactured with a mechanical method (3-roll-mill). Tensile, impact and wear tests were performed according to ASTM standards D3039, D256 and D3181, respectively. The results show that the CF/GNP0.3wt%/Epoxy composites have good mechanical properties, e.g., tensile strength and impact and wear resistance. In this study, both carbon fabric and GNPs were used as reinforcements in the composites. The mechanical properties increased and weight loss decreased as the GNP content in the resin films was increased.

Multi-objective optimization of double wishbone suspension of a kinestatic vehicle model for handling and stability improvement

  • Bagheri, Mohammad Reza;Mosayebi, Masoud;Mahdian, Asghar;Keshavarzi, Ahmad
    • Structural Engineering and Mechanics
    • /
    • v.68 no.5
    • /
    • pp.633-638
    • /
    • 2018
  • One of the important problems in the vehicle design is vehicle handling and stability. Effective parameters which should be considered in the vehicle handling and stability are roll angle, camber angle and scrub radius. In this paper, a planar vehicle model is considered that two right and left suspensions are double wishbone suspension system. For a better analysis of the suspension geometry, a kinestatic model of vehicle is considered which instantaneous kinematic and statics relations are analyzed simultaneously. In this model, suspension geometry is considered completely. In order to optimum design of double wishbones suspension system, a multi-objective genetic algorithm is applied. Three important parameters of suspension including roll angle, camber angle and scrub radius are taken into account as objective functions. Coordinates of suspension hard points are design variables of optimization which optimum values of them, corresponding to each optimum point, are obtained in the optimization process. Pareto solutions for three objective functions are derived. There are important optimum points in these Pareto solutions which each point represents an optimum status in the model. In other words, corresponding to any optimal point, a specific geometric position is determined for the suspension hard points. Each of the obtained points in the Pareto optimization can be selected for a special design purpose by designer to create an optimum condition in the vehicle handling and stability.

Evaluation of Formability Dependent on Reconfigurable Roller Types for 3D Curved Sheet Forming (3차원 곡판 성형을 위한 비정형롤러의 형태에 따른 성형성 평가)

  • Son, S.E.;Yoon, J.S.;Kim, H.H.;Kim, J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.25 no.1
    • /
    • pp.12-20
    • /
    • 2016
  • Press machines and dies are commonly used for 3D curved sheet forming. Using conventional die forming can cause economic problems since various modifications of the die shape are required depending on the product shape. Various types of flexible forming such as multi-point dieless forming (MDF), flexible incremental roll forming have been developed to improve the needed process flexibility. Although MDF can reduce the production cost using reconfigurable dies, it still has significant material loss. Drawbacks such as wrinkling, dimpling, and forming errors can also occur despite continuous investigations to mitigate these defects. A novel sheet forming process for 3D curved surfaces, a flexibly-reconfigurable roll forming (FRRF), has been recently proposed to overcome the economic and technical limitations of current practice. FRRF has no limitation on blank size in the longitudinal direction, and also minimizes or eliminates forming defects such as wrinkling and dimpling. Feasibility studies of FRRF have been conducted using FE simulations for multi-curved shapes and various sheet thicknesses. Therefore, the fabrication of a FRRF apparatus is required for any follow-up studies. In the current study, experiments with reconfigurable rollers were conducted using a simple design pre-FRRF apparatus prior to fabricating the full size FRRF apparatus. There are three candidates for the reconfigurable roller: a bar-type shaft, a flexible shaft, a ground flexible shaft. Among these candidates, the suitable reconfigurable roller for FRRF is determined through various forming tests.

Taguchi method-optimized roll nanoimprinted polarizer integration in high-brightness display

  • Lee, Dae-Young;Nam, Jung-Gun;Han, Kang-Soo;Yeo, Yun-Jong;Lee, Useung;Cho, Sang-Hwan;Ok, Jong G.
    • Advances in nano research
    • /
    • v.13 no.2
    • /
    • pp.199-206
    • /
    • 2022
  • We present the high-brightness large-area 10.1" in-cell polarizer display panel integrated with a wire grid polarizer (WGP) and metal reflector, from the initial design to final system development in a commercially feasible level. We have modeled and developed the WGP architecture integrated with the metal reflector in a single in-cell layer, to achieve excellent polarization efficiency as well as brightness enhancement through the light recycling effect. After the optimization of key experimental parameters via Taguchi method, the roll nanoimprint lithography employing a flexible large-area tiled mold has been utilized to create the 90 nm-pitch polymer resist pattern with the 54.1 nm linewidth and 5.1 nm residual layer thickness. The 90 nm-pitch Al gratings with the 51.4 nm linewidth and 2150 Å height have been successfully fabricated after subsequent etch process, providing the in-cell WGPs with high optical performance in the entire visible light regime. Finally we have integrated the WGP in a commercial 10.1" display device and demonstrated its actual operation, exhibiting 1.24 times enhancement of brightness compared to a conventional film polarizer-based one, with the contrast ratio of 1,004:1. Polarization efficiency and transmittance of the developed WGPs in an in-cell polarizer panel achieve 99.995 % and 42.3 %, respectively.

A Numerical Study on Dynamic Characteristics of Counter-Rotating Rigid/Deformable Rolls in Press Contact (압착되어 회전하는 강체/변형 롤의 동적 특성에 관한 수치해석 연구)

  • Lee, Moon-Kyu;Lee, Sang-Hyuk;Hur, Nahm-Keon;Seo, Young-Jin;Kim, In-Cheol;Lee, Sung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.869-876
    • /
    • 2011
  • It is important to analyze the dynamic behavior of counter-rotating rigid/deformable rolls in the roll-coating process, because the stability of the process is affected by the dynamic characteristics. In the present study, the effects of material property, angular velocity, and gap size on the contact pressure and contact shape of the deformable roll are numerically investigated. The behavior of two rolls with a negative gap was analyzed using the finite element method, and the material property of the deformable roll was applied with the Mooney-Rivlin coefficients of the hyper-elastic model. The contact shape is affected by the gap size, and the contact pressure mainly depends on the stiffness of the deformable roll and the gap size. To maintain a negative gap between two rolls, controls such as load and displacement controls must be used. The results indicate that displacement control can reduce the instability.