• Title/Summary/Keyword: Press Quenching

Search Result 34, Processing Time 0.024 seconds

Shape Control of Automotive Flexible Plate in Press Quenching (프레스 퀜칭 공정에 의한 자동차 Flexible Plate의 형상 제어 연구)

  • Park, I.H.;Jeong, W.C.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.4
    • /
    • pp.189-198
    • /
    • 2008
  • The production of automotive chassis parts requiring both high hardness and good shape-holdability is better realized by using press quenching technology, comprising the austenitizaton and the subsequent press quenching in a specially designed stamping tool. The effect of press quenching mold shape on the hardness distribution, bending height, and degree of planeness of automotive flexible plate during press quenching and tempering has been investigated. The preferable shape of the projections of punch and die in contact with the flexible plate was close to oval to improve the flow of cooling oil, leading to the higher hardness. The press quenching mold with three separate parts was more effective to control the dimensional change due to thermal deformation during press quenching. Some decrease in the bending height during tempering may be related to some recovery of the residual stress at $400^{\circ}C$.

Comparison of the Quenching Method in Hot Press Forming of Boron Steel (보론강 카메라 케이스 고온성형 공정 비교)

  • Seo, O.S.;Kim, H.Y.;Hong, S.M.;Ryu, S.Y.;Yoon, S.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.185-189
    • /
    • 2009
  • Recently, ultra high strength products can be manufactured by the hot press forming process of Boron steel in automotive and electronics industries. In order to get high strength, the hot press forming should be accompanied by quenching process inducing phase transformation. There are several types of the hot press forming processes according to the quenching method, water quenching and die quenching, etc. In the study, the process was numerically and physically simulated to compare the two types of quenching processes, and then the strength, hardness and dimensions of the products were compared with try-outs.

Study on the design of quenching fixture in hot press forming process (핫프레스포밍 공정의 냉각치구 설계에 관한 연구)

  • Lee, K.;Kwak, E.J.;Kim, H.Y.;Lee, Gi-Dong;Park, Jong-Kyu;Suh, Chang-Hee
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.337-340
    • /
    • 2009
  • In hot press forming process, the desired high strength can be obtained through quenching process after cold forming of product. The quenching process, however, accompanies undesired distortion due to the volume change during the phase transformation as well as by thermal contraction. In this study the numerical simulation with DEFORM3D-Microstructure is used to predict the deformed shape during the quenching for the quenching fixture design.

  • PDF

Application of Press Quenching Technology to Automotive Drive Plate (프레스 퀜칭에 의한 자동차 드라이브 플레이트 제조에 관한 연구)

  • Jeong, W.C.
    • Transactions of Materials Processing
    • /
    • v.20 no.8
    • /
    • pp.588-594
    • /
    • 2011
  • A new manufacturing process is presented for automotive drive plate using a boron-containing carbon steel sheet, which is hot-formed and press quenched. Particular attention was given to the capability of the process in minimizing dimensional change.

Study on Heat Transfer Characteristic in Hot Press Forming Process (핫프레스 포밍 공정에서의 열전달 특성에 대한 연구)

  • Lee, S.Y.;Lee, K.;Lim, Y.H.;Jeong, W.C.
    • Transactions of Materials Processing
    • /
    • v.22 no.2
    • /
    • pp.101-107
    • /
    • 2013
  • The heat transfer characteristics between die and sheet and die and coolant are important parameters in hot press forming process. The determination of the quenching time that guarantees full martensitic transformation requires proper understanding of these heat transfer characteristics. The contact area changes drastically during the quenching process due to volume changes of both die and sheet by temperature drop as well as phase transformation. Several types of modeling techniques are tested in order to select the most suitable. The effect of quenching time as well as die heat conductivity on martensitic transformation is investigated and predictions are compared to experimental results.

Determination of Heat Treatment Condition for Hot Press Formed Automotive Flex Plate (자동차용 플렉스 플레이트 제조를 위한 핫프레스 포밍 열처리 조건 최적화)

  • Park, I.H.;Lee, M.G.;Kim, S.J.;Jeong, W.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.186-189
    • /
    • 2008
  • The flex plate, an automotive part which mounts to the automotive engine to transfer torque to transmission, should have considerable hardness and shape accuracy. As a way to produce the flex plate, the hot press forming technology which takes advantages of high formability at elevated temperature, enhanced strength and shape stability was introduced. Therefore, as one of major process parameters the heat treatment condition should be determined to obtain appropriate hardness in the range of manufacturer's specifications. In this study, two heat treatments, austempering and quenching and tempering (QT), were compared as feasible conditions fur the hot press forming of high-carbon tool steel and the hardness and toughness after heat treatments were evaluated. The study showed that both heat treatments resulted in improved hardness but only quenching and tempering showed practicable range of toughness.

  • PDF

Try out and Analytical Researches on Quenching Process of Coupled Torsion Beam Axle using Boron Steel Tube (보론강을 이용한 CTBA의 후열처리 공정 실험 및 해석)

  • Yoon, S.J.;Park, J.K.;Kim, Y.S.;Suh, C.H.;Lee, K.H.;Kim, R.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.181-184
    • /
    • 2009
  • The hot press farming process, which is the press hardening of steel parts using cold dies, can utilize both ease of shaping and high strength due to the hardening effect of rapid quenching during the pressing. In this study, a thermo-elastoplastic analysis of the hot press forming process using the finite element method was performed in order to investigate the deformation behavior and temperature history during the process and the mechanical properties of the pressed parts.

  • PDF

Design of cooling channel in hot press forming process of Boron Steel (보론강 고온 성형 공정의 냉각 채널 설계)

  • Hong, S.M.;Ryu, S.Y.;Park, J.K.;Yoon, S.J.;Kim, K.J.;Kim, H.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.367-370
    • /
    • 2009
  • Recently, ultra high strength products can be manufactured by the hot press forming process of Boron steel in automotive and electronics industries. In order to get high strength, the hot press forming should be accompanied by quenching process inducing phase transformation. In the study, the heat conductive die and the cooling channel were designed by the numerical simulation and the effect of three different parameters were determined to improve cooling characteristics.

  • PDF

Mechanical and microstructural characteristics of a high-strength boron-alloyed steel for hot press forming (고온성형 위한 고강도보론강의 기계적 특성 및 마이크로구조 연구)

  • Lee, Jong-Shin;Chae, Myoung-Su;Park, Chun-Dal;Kim, Young-Suk
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1355-1360
    • /
    • 2007
  • The use of high strength steels are gradually increasing to reduce the weight of automobile to improve the environmental problems and collision safety. To encounter the traditional disadvantages of high strength steels like as a poor formability and high springback, hot press forming has been developed. By this method, the strength of steel sheet is increased about three times of original one through die quenching process. In order to the design of hot press forming tools by using numerical simulation, the knowledge of mechanical and microstructural characteristics are required. This study show the mechanical and microstructural characteristics of a high strength boron-alloyed steel according to the various quenching conditions.

  • PDF

The manufacturing process analysis and design of the forged turbine rotor by using the numerical analysis technique (수치해석 기법을 이용한 발전용 단조 로타의 제조 공정 분석 및 공정 설계)

  • 조종래;김동권;이정호;이부윤;이명렬
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.06a
    • /
    • pp.25-34
    • /
    • 1995
  • Large-scale low-alloy steel shafts, used in the manufacture of steam turbine, are produced by ingot making, forging and heat treatemtn processes. The numerical analysis techniques are introduced to analyze and design the working conditions in each process. The solidification of a steel ingot is studied through the finite element method. The open die press forging and quenching process are simulated by viscoplastic and elastic-plastic finite element method, respectively. Thus numerical analysis techniques are very useful tools to study favorable working conditions for better and more desirable product quality.