• Title/Summary/Keyword: Press Dies

Search Result 98, Processing Time 0.029 seconds

The Prediction of Interfacial Heat Transfer Coefficient According to Contact Time and Pressure in Forging and Casting Die Materials for the Hot Press Forming (핫프레스포밍용 주조, 단조 금형에 대한 시간과 압력에 따른 대류열전달계수의 예측)

  • Kim, N.H.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.19 no.6
    • /
    • pp.378-386
    • /
    • 2010
  • Nowadays there has been great interest in using heat treated cast material for press dies due to several advantages like reduction in die production costs. However, in hot press forming processes H13 forged tool steel is mostly used. Cooling performance of dies in hot press forming processes is considered as an important factor of study and also the IHTC parameter between cast material die and sheet metal should be considered as an essential. In the present study, the IHTC was calculated for the sheet metal in the hot press forming process with cast and forged material dies. The temperature measurements were performed for the sheet metal, casting and forged material dies by applying various contact pressure in hot press forming. IHTC was calculated and studied by adopting the inverse heat convection method in DEFORM-2D. Each IHTC was considered as a function of contact time and contact pressure. The experimental data were compared with calculated data obtained from the proposed equation and references.

PPR Information Managements for Manufacturing of Automotive Press Dies (자동차 금형 생산을 위한 PPR 정보 관리)

  • Kim, Gun-Yeon;Lee, In-Seok;Song, Myeong-Hwan;Noh, Sang-Do
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.6
    • /
    • pp.452-460
    • /
    • 2007
  • To achieve rapid developments and cost savings in manufacturing industries including automotive die shops, new paradigm and its supporting systems of information managements through total product life cycle are needed for concurrent and collaborative engineering. For manufacturing of automotive press dies, integrated and efficient managements of PPR information including product, manufacturing process and resource are essential. In this paper, we introduce a PLM approach to achieve engineering collaborations in product development and production of automotive dies. To prove concepts and benefits of PPR information managements, we implement new business workflow and detail procedures, PPR information management system and other related applications. By PPR information managements in PLM, improvements in quality of engineering results and savings in time from design to production of dies are possible.

Tryout Management System for Press Dies Production using Ubiquitous Technology (유비쿼터스 기술을 이용한 프레스 금형의 트라이아웃 관리시스템)

  • Choi, Sang-Su;Yang, Tae-Ho;Noh, Sang-Do;Jin, Hee-Ju;Lee, Yong-Han;Lee, In-Seok;Kwon, Sung-Oh
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.5
    • /
    • pp.314-322
    • /
    • 2009
  • In these days, automotive companies are trying to develop new manufacturing technologies and paradigms for rapid product development and production. The press die development process account for 40% of entire vehicle development process, and tryout process usually takes 3 to 4 months, and it is the biggest time portion out of dies manufacturing. Therefore, the effective tryout management system is essential to reduce time and cost of automotive press die production. This paper suggests improved process and practical application of tryout management using ubiquitous technology, and shows the results such as shorten time, improved quality and supporting of lifecycle engineering of press die.

A Tryout Report System of Press Dies using Case-Based Reasoning (사례기반추론을 이용한 금형 트라이아웃 보고서 작성시스템)

  • Yang, Tae-Ho;Choi, Sang-Su;Kim, Gun-Yeon;Lee, In-Seok;Kim, Wook-Tae;Noh, Sang-Do
    • IE interfaces
    • /
    • v.23 no.1
    • /
    • pp.48-57
    • /
    • 2010
  • A tryout is one of the most important process in development and production of dies. For automotive press dies, it takes 3 to 4 months during the vehicle development process. Moreover, useful information and knowledge from tryout process is very important to design and production planning of dies. In this paper, we developed a new supporting system for making and managing tryout reports of an automotive press die. The CBDTS(Case-Based reasoning for Die Tryout report System) was developed and applied using case-based reasoning method in order to reduce time and manage knowledge of tryout. It consists of "Class Retrieval Wizard", "Case Cleansing Module", and "Case Viewer." Also, this CBDTS could be a channel to integrate field information with enterprise-wide information management systems as well. The CBDTS was applied to a Korean automotive press die shop, and the results were very satisfied in both quantitative and qualitative manners.

Design of the strip layout using E die design of Cimatron (씨마트론 E 다이 디자인을 활용한 스트립레이아웃 설계)

  • Choi, Kye-Kwang
    • Design & Manufacturing
    • /
    • v.2 no.3
    • /
    • pp.51-57
    • /
    • 2008
  • It is important factor to design the strip layout drawing according to product properties in press die design. Press dies are important processes in production such as a car component, house electronics, computer parts etc. In this paper, the strip layout of parts was designed for transfer dies. Results of this study can be modify the punch, trim position and notching shapes of strip layout. Utilization ratio was 70.3% by conducting piercing and notching for scrap design and materials were arranged with wide width of blank layout.

  • PDF

A Process Planning System for Machining of Dies for Auto-Body Production (자동차 차체금형 가공용 공정계획 시스템)

  • 신동목;이창호;이기우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.108-115
    • /
    • 2000
  • This paper presents a variant type process planning system for machining of dies for auto-body production. Through the analysis of dies and their manufacturing processes, the authors categorized the press dies into 15 groups according to the similarity of machining features. After critically reviewing current manufacturing procedures, a standard process plan was defined for each group. The authors present MP3D the process planning system built on the standard process plan database, and show how they apply it at the die manufacturing plant of an automobile company. MP3D is expected to reduce major losses in machining such as reworking caused by mistakenly uncut features and eventually to help to accumulate the knowledge of operators. The operation sheet MP3D produces is also used in monitoring the progress of manufacturing of dies. This paper explains the whole development cycle of a process planning system from process analysis to application so that it can help readers to develop and apply a process planning system to their machine shops.

  • PDF

A Process Planning System for Machining of Dies for Auto-Body Production-Operation Planning and NC Code Post-Processing

  • Dongmok Sheen;Lee, Chang-Ho;Noh, Sang-Do;Lee, Kiwoo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.3
    • /
    • pp.69-78
    • /
    • 2001
  • This paper presents a process and operation planning system and an NC code post-processor for effective machining of press dies for production of cars. Based on the machining feature, major parts of press dies are categorized into 15 groups and a standard process plan is defined for each group. The standard process plan consists of a series of processes where a process is defined as a group of operations that can be done with one setup. Details such as cutting tools, cutting conditions, and tool paths are decided at the operation planning stage. At the final stage of process and operation planning, the NC code post-processor adjusts feedrates along the tool path to reduce machining time while maintaining the quality. The adjustment rule is selected based on the machining load estimated by virtual machining.

  • PDF

Design Analysis System for Dieface of Stamping Press Dies (스탬핑 프레스 금형 다이페이스 설계 해석 시스템)

  • 금영탁;정승훈;이완우;박성일;김준환
    • Transactions of Materials Processing
    • /
    • v.9 no.6
    • /
    • pp.567-573
    • /
    • 2000
  • An analysis system for evaluating the design of dieface of stamping press dies is developed. The die design analysis system interfaced with CATIA via universal or NASTRAN data format provides the design information such as binder-wrap, punch contact status, section length change ratio, wrinkle symptom etc., which are crucial in predicting the defects of initial shape of the sheet in the dieface design stage. The graphic post-processor of developed system which displays 3-dimensional shapes of tool and die and analysis results, helps the interpretation of design evaluation. The dieface design analysis system was tested in draw dies of front floor panel and quarter panel of auto-body in order to verify the usefulness and validity of the system The examples show that the developed system would be a good tool in evaluating dieface designs.

  • PDF

Automatic Process Planning by Parsing the Parameters of Standard Features (표준형상 매개변수 추출을 이용한 자동공정계획)

  • 신동목
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.105-111
    • /
    • 2003
  • This paper presents an approach to automate process planning of press dies for manufacturing of car bodies. Considering that the press-dies used at the same press operations regardless of the panels they produce or the car models of which they produce panels have similar shapes except for the forming part of the dies, general approaches to recognize manufacturing features from CAD models are not necessary. Therefore, a hybrid approach is proposed combining feature-based design and feature-extraction approaches. The proposed method recognizes features by parsing the parameters extracted from CAD models and finds proper operations by querying the database by the recognized features. An internet-based process planning system is developed to demonstrate the proposed approach and to suggest a new paradigm of process planning system that utilizes an internet access to the CAD system.

Tough High Thermal-Conductivity Tool Steel for Hot Press Forming (핫 프레스 포밍을 위한 고열전도성 금형에 대한 연구)

  • Kum, Jongwon;Park, Okjo;Hong, Seokmoo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.130-134
    • /
    • 2016
  • Due to the need for advanced technologies in the automotive industry, the demand for lighter and safer vehicles has increased. Even though various nonferrous metals, like Aluminum, Magnesium and also Carbon Fiber Reinforced Plastic (CFRP), have been implemented in the automotive industry, a lot of technical research and development is still focused on ferrous metals. In particular, the market volume of High Strength Steel (HSS) parts and Ultra High Strength Steel (UHSS) by hot press forming parts has expanded significantly in all countries' automotive industries. A new tool steel, High Thermal-Conductivity Tool Steel (HTCS), for stamping punches and dies has been developed and introduced by Rovalma Company (Spain), and it is able to support better productivity and quality during hot press forming. The HTCS punches and dies could help to reduce cycle time due to their high thermal conductivity, one of the major factors in hot press forming operation. In this study, test dies were manufactured in order to verify the high thermal conductivity of HTCS material compared to SKD6. In addition, thermal deformation was inspected after the heating and cooling process of hot press forming. After heating and cooling, the test dies were measured by a 3D scanner and compared with the original geometry. The results showed that the thermal deformation and distortion were very small even though the cooling time was reduced by 2 seconds.