• Title/Summary/Keyword: Press Die Design

Search Result 192, Processing Time 0.032 seconds

Failure life estimation of sharp-notched circular tubes with different notch depths under cyclic bending

  • Lee, Kuo-Long;Chang, Kao-Hua;Pan, Wen-Fung
    • Structural Engineering and Mechanics
    • /
    • v.60 no.3
    • /
    • pp.387-404
    • /
    • 2016
  • In this paper, the response and failure of sharp-notched 6061-T6 aluminum alloy circular tubes with five different notch depths of 0.4, 0.8, 1.2, 1.6 and 2.0 mm subjected to cyclic bending were experimentally and theoretically investigated. The experimental moment-curvature relationship exhibits an almost steady loop from the beginning of the first cycle. And, the notch depth has almost no influence on its relationship. However, the ovalization-curvature relationship exhibits a symmetrical, increasing, and ratcheting behavior as the number of cycles increases. In addition, a higher notch depth of a tube leads to a more severe unsymmetrical trend of the ovalization-curvature relationship. Focusing on the aforementioned relationships, the finite element software ANSYS was used to continue the related theoretical simulation. Furthermore, the five groups of tubes tested have different notch depths, from which five unparallel straight lines can be observed from the relationship between the controlled curvature and the number of cycles required to produce failure in the log-log scale. Finally, a failure model was proposed to simulate the aforementioned relationship. Through comparison with the experimental data, the proposed model can properly simulate the experimental data.

An Analysis of Closed Die Forging of Laser Printer Shaft by Finite Element Method (레이저 프린터용 샤프트 밀폐단조 성형해석)

  • Cho, S.H.;Shin, M.S.;Kim, J.H.;Ra, S.W.;Kim, J.B.
    • Transactions of Materials Processing
    • /
    • v.18 no.2
    • /
    • pp.150-155
    • /
    • 2009
  • A shaft for laser printers has to be produced with high dimensional accuracy of a few micrometers. Most companies produce the shaft, therefore, by machining. These days, forging process is tried to be employed in manufacturing the shaft for productivity. In this study, the dimensional inaccuracy of straightness is studied and the underfill is not focused because the shaft shape is simple and the load capacity of press is sufficient. The straightness and concentricity of the shaft is important for the operation of a laser printer. Many design parameters such as preform shapes, tooling dimensions, forging load, and billet geometries may affect on the dimensional accuracy. In the forging process of shafts, a billet which is cut from wires is used. The billet, therefore, may be a little bit curved but not always straight. The elastic recovery is considered to cause the dimensional inaccuracy. Therefore, the effect of the forging load on the elastic recovery and straightness is investigated through the finite element analyses using DEFORM-3D and ABAQUS.

Prevention of Internal Defects of Cold Extruded Planetary Gears (냉간 압출된 유성기어의 내부결함 방지)

  • Lee, J.-H.;Choi, J.;Lee, Y.-S.;Choi, S.-H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.168-173
    • /
    • 1999
  • It is investigated that internal defect of planetary gear which consists of two gears with different number of teeth on both side. The internal defect, central burst, begin to form at the place of adiabatic shear band which usually has maximum ductile fracture value during the forming operation, forward and backward extrusion. It makes the plastic forming of planetary gear difficult. The prediction of defect to minimize the cost to produce the planetary gear. The finite element simulation code DEFORM is applied to analyze the defects. In the analysis, the toothed gears are assumed as axisymmetric cylinders whose diameters are equal to those of pitch circles of the each gears. Experiments were carried out with the SCM415 alloy steel as billet material and AIDA 630-ton knuckle-joint press. The calculated results and experimental inspections are compared to design a die and blank without defects and the results are useful to predict the internal defect.

  • PDF

Optimization of Hot Forging Process Using Six Sigma Scheme and Computer Simulation Technology Considering Required Metal Flow Lines (6 시그마 기법과 컴퓨터 시뮬레이션 기술을 이용한 금속 유동선도를 고려한 열간 단조공정의 최적화)

  • Moon H. K.;Moon S. C.;Joun M. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.199-202
    • /
    • 2005
  • In this paper, the six sigma scheme is employed together with the rigid-viscoplastic finite element method to obtain the optimal metal flow lines in hot press forging. In general, the six sigma process is consisted of following five steps : define, measure, analyze, improve and control. Each step Is investigated in detail to meet customer's requirements through improvement of product quality. A forging simulator, AFDEX-2D, is used for analysis of the metal flow lines of a multi-stage hot forging process under various conditions of major factors, determined at each step of the six sigma process. The analyzed results are examined in order to reveal the effects of major factors on the metal flow lines and the formed shapes. The effects are used to find an optimal process and the optimal process with die is devised and tested. The comparison between required metal flow lines and experiments shows that the approach is effective for optimal process in hot forging design considering metal flow lines.

  • PDF

Forming Analysis and Experiment of Hard to Forming T Shape Aluminum Part (난성형 T형상 알루미늄 부품의 성형공정 해석 및 실험)

  • Jin, Chul-Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.141-148
    • /
    • 2017
  • A process comprising a hot extrusion process and a warm forging process was designed to form a T-shaped aluminum structural component with a high degree of difficulty by the plastic forming method. A circular cylindrical part was extruded with a hot extrusion process, and then an embossing part was formed with a warm forging process. The formability and the maximum load required for forming were then determined using a forming analysis program. The hot extrusion process was executed at $450^{\circ}C$ under the extrusion speed at 6 mm/s, while the warm forging process was executed at $260^{\circ}C$ under the forging speed at 150 mm/s. For both the processes, a condition by which friction would not be generated between the mold and the material was implemented. The analysis results showed that the load required for hot extrusion was 1,019 tons, while the load required for the warm forging was 534 tons. The T-shaped part was manufactured by using a 1,600 tons capacity press. The graphite lubricant was coated on the mold as well as the material. A forming experiment was performed under the same condition with the analysis condition. The measured values from the load cell were 1,210 tons in the hot extrusion process and 600 tons in the warm forging process.

A Study on the Electrical Discharge Machining Tap by using Cu Electrodes of the Cold-Work Tool Steel (냉간 금형용 공구강의 Cu 전극을 이용한 방전 탭에 관한 연구)

  • Lee, Eun-Ju;Park, In-Soo;Kim, Hu-Kwon;Wang, Duck-Hyun;Chung, Han-Shik;Lee, Kwang-Sung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.131-136
    • /
    • 2016
  • Currently, an EDM tapping procedure has comprised some parts of the engraving discharge process for the press die. Usually, tapping has been used in cases where we are unable to mechanically machine using steelwork processes due to an increase in the hardness of a material after heat treatment in relation to a design change or missing process. Here, we analyze the influence of discharge tap shape on discharge time, discharge current, and the number of repetition conditions when a cold-work tool steel (STD11) has been treated with a discharge tapped by a screw-shaped cu electrode. The most important influence on processing condition has been determined to be the number of discharge repetitions. As this number increases, the angle reduction of a thread closes to an angle of the electrode via a power generation reduction. The optimal combination of conditions has been determined to be three discharge repetitions, $180{\mu}s$ of discharge time (same as existing regulations), and 25.4A of peak current. A 0.2749db advantage has emerged after comparing between this combination of optimal conditions and the SN rate of existing regulations.

Japanese mold technology revolutionizing the mold industry (금형 산업을 변혁하는 일본의 금형 기술)

  • Jeong-Won Lee;Yong-Dae Kim;Sung-Hee Lee
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.21-27
    • /
    • 2023
  • The mold industry in Japan, an advanced country in the mold industry, is also at a point of great change. The main causes are the Ukraine crisis and the collapse of the global supply chain (parts supply chain) caused by COVID-19. In addition, the prices of overseas products are rising sharply due to rapid exchange rate fluctuations (decrease in the value of the yen). Until now, Japan's monotsukuri industry has been actively pursuing overseas expansion, riding the trend of globalization. However, the trend began to rapidly reverse, and now the monotsukuri industry that had expanded overseas is showing a tendency to return to Japan. Another factor of change is the change in the automobile industry, which is the most demanded product in the mold industry. As the automobile industry evolves from gasoline cars to electric cars, the number of parts that make up a car will drastically decrease. This trend is expected to increase the demand for small-scale production of a variety of products in the mold industry, and furthermore, it is expected that short delivery times will be required in parts development. As in Korea, the production population working in the mold industry is rapidly decreasing in Japan as well. Even if you add up the total population working in manufacturing in Japan, it only accounts for about 15%. Even in Japan, it is judged that it will be difficult to sustain the monotsukuri industry with this small production population. Therefore, since improvement in production efficiency cannot be expected with the same manual dexterity as before, the mold industry is also demanding the development of mold technology at a different level than before to increase productivity. In this paper, I would like to introduce new Japanese mold technology collected through attending the Intermold exhibition. This is an example of applying a dedicated pin (Gastos) to a mold to prevent an increase in internal pressure during plastic injection molding, and a deep drawing press molding technology with an inherent hydraulic function.

Machinability investigation and sustainability assessment in FDHT with coated ceramic tool

  • Panda, Asutosh;Das, Sudhansu Ranjan;Dhupal, Debabrata
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.681-698
    • /
    • 2020
  • The paper addresses contribution to the modeling and optimization of major machinability parameters (cutting force, surface roughness, and tool wear) in finish dry hard turning (FDHT) for machinability evaluation of hardened AISI grade die steel D3 with PVD-TiN coated (Al2O3-TiCN) mixed ceramic tool insert. The turning trials are performed based on Taguchi's L18 orthogonal array design of experiments for the development of regression model as well as adequate model prediction by considering tool approach angle, nose radius, cutting speed, feed rate, and depth of cut as major machining parameters. The models or correlations are developed by employing multiple regression analysis (MRA). In addition, statistical technique (response surface methodology) followed by computational approaches (genetic algorithm and particle swarm optimization) have been employed for multiple response optimization. Thereafter, the effectiveness of proposed three (RSM, GA, PSO) optimization techniques are evaluated by confirmation test and subsequently the best optimization results have been used for estimation of energy consumption which includes savings of carbon footprint towards green machining and for tool life estimation followed by cost analysis to justify the economic feasibility of PVD-TiN coated Al2O3+TiCN mixed ceramic tool in FDHT operation. Finally, estimation of energy savings, economic analysis, and sustainability assessment are performed by employing carbon footprint analysis, Gilbert approach, and Pugh matrix, respectively. Novelty aspects, the present work: (i) contributes to practical industrial application of finish hard turning for the shaft and die makers to select the optimum cutting conditions in a range of hardness of 45-60 HRC, (ii) demonstrates the replacement of expensive, time-consuming conventional cylindrical grinding process and proposes the alternative of costlier CBN tool by utilizing ceramic tool in hard turning processes considering technological, economical and ecological aspects, which are helpful and efficient from industrial point of view, (iii) provides environment friendliness, cleaner production for machining of hardened steels, (iv) helps to improve the desirable machinability characteristics, and (v) serves as a knowledge for the development of a common language for sustainable manufacturing in both research field and industrial practice.

Evaluation of incremental sheet forming characteristics for 3D-structured aluminum sheet - part 2 (3D 구조 알루미늄 판재의 점진판재성형 특성 평가 (제2보))

  • Kim, Young-Suk;Do, Van-Cuong;Ahn, Dae-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1585-1593
    • /
    • 2015
  • 3D-structured (embossed) aluminum sheets have been used in the heat insulation purpose for automative exhaust parts because of increasing their surface areas and stiffness reinforcement imposed in making the embossing pattern. However, there are many restrictions in press forming of the embossed sheet compared with the flat sheet (non-embossed one) because of its difference in the mechanical properties and the geometrical 3-dimensional shape. In this paper we investigated the deformation characteristic of embossed aluminum sheet in the incremental sheet forming process which has frequently used in the design verification and the trial manufacturing of sheet products. The single point incremental forming (SPIF) experiments for the rectangular cone forming using the CNC machine with a chemical wood-machined die and a circular tool shape showed that the formability of the embossed sheet are better than that of the flat sheet in view of the maximum angle of cone forming. This comes from the fact that the embossed sheet between the tool and the elastic die wall is plastically compressed and the flatted area contributes to increase the plastic deformation. Also the tool path along the outward movement from the center showed a better formability than that of the inward movement from the edge. However the surface quality for the tool path along the outward movement evaluated from the surface deflection is inferior than that of the tool path along the inward movement.

A Study on the Development of Large Aluminum Flange Using Casting/Forging Process (주조/단조 기술을 이용한 대형 알루미늄 플랜지 개발에 관한 연구)

  • Bae, Won-Byeong;Wang, Sin-Il;Seo, Myeong-Gyu;Jo, Jong-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1438-1443
    • /
    • 2001
  • The significance of the casting/forging process for reducing the production cost of large components is being noted in these days. This casting/forging process is a method of forging a workpiece preformed by casting into the final shape. In this study, the casting/forging process has been applied in manufacturing a large aluminum flange in order to reduce press capacity and material cost. Firstly, a hot compression test was performed with cast cylindrical billets in order to determine the optimum forging condition of the aluminum flange. The optimum range of forging temperature of Al 5083 was from 420$\^{C}$ to 450$\^{C}$. The suitable strain rate was 1.5 sec(sup)-1. The deformation amount of a preform of a preform in a forging process is a key role in the mechanical properties of casting/forging products. In order to find the change of mechanical properties according to effective stain of cast aluminum billets, a hot upsetting test were performed with rectangular blocks and then a uniaxial tensile test was performed with specimens cut from the upsetted billets. The tensile strength and the elongation of cast/upsetted aluminum billets were increased largely until the effective strain was 0.7. FE analysis was performed to determine the configurations of case preform and die for an aluminum flange. In the FE analysis, the forging load-limit was fixed 1500ton for low equipment cost. The cast preform was designed so that the effective stain around the neck of a flange exceeded 0.7. From the result of FE analysis, optimal configurations of the cast preform and the die were designed for a large flange. The filling and solidification analysis for a sound cast-preform was carried out with MAGMA soft. In the forging experiment for an aluminum flange, it was confirmed that the optimal configuration of the cast preform predicted by FE analysis was very useful. The cast/forged products using designed preform were made perfectly without any defects.