• Title/Summary/Keyword: Press Concrete

Search Result 4,908, Processing Time 0.029 seconds

The Control Methods of Crack on Concrete with Fiber reinforced and Finishing (섬유종류 및 마감방법에 따른 무근콘크리트의 균열제어 방법)

  • Lee, Tae-Gyu;Kim, Gyu-Yong;Kang, Yeon-Woo;Kim, Soon-Mook;Kim, Soo-Bong;Jung, Jae-Yung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.260-261
    • /
    • 2014
  • When press concrete with high W/B was hardened, it should consider a crack to make stress by drying shrinkage. For control of crack, wire-mesh used to reinforce concrete in site. Actually, it reported failure case in lack of quality control. This study conducted experiment to apply fiber reinforced press concrete. it was evaluated on fresh property, compressive strength and shrinkage crack of press concrete with fiber.

  • PDF

Plastic Shrinkage Cracking Reduction of Press Concrete Using Admixtures in Basement (주차장바닥에서 혼화재료들을 사용한 누름콘크리트의 소성수축 균열저감)

  • Kim, Young-Su;Lee, Dong-Un
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.416-424
    • /
    • 2019
  • In Korea, press concrete in basements is mainly applied using plain concrete. This system has undesirable defects such as cracks caused by plastic shrinkage and irregular temperature distribution. To solve this problem, metal lath and fibers have been used in the past. However, they have not been effective in controlling cracks. This study analyzed the reduction of plastic shrinkage cracking for press concrete using various admixtures in a basement has been. In the air contents test, the specimens with various admixtures showed air contents similar to plain concrete (4.5±1.5%). The specimens using silica fume, super plasticizer agent, and SBR showed higher compressive strength by about 10-15% than plain concrete. Cracking decreased when the MC, super plasticizer, and SBR were added. When MC was used in the concrete, the plastic shrinkage did not occur.

An Experimental Study on the Fiber Reinforced Concrete for Field Application of press Concrete (누름콘크리트의 현장적용을 위한 섬유보강 콘크리트에 관한 연구)

  • Kim, Ho-Su;Park, Cho-Bum;Jo, Hyun-Tae;Gang, Yeon-Woo;Kim, Jeong-Sik;Ryu, Deuk-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.541-542
    • /
    • 2009
  • In this study, the properties of concrete with various fiber(cellulose, PP, PVA) such as slump, air content, compressive strength, tensile strength and bending strength were examined. In addition, field application of press concrete with disperse cellulose fiber in liquid were investigated.

  • PDF

Failure criteria of concrete- A review

  • Muthukumar, G.;Kumar, Manoj
    • Computers and Concrete
    • /
    • v.14 no.5
    • /
    • pp.503-526
    • /
    • 2014
  • Concrete is a versatile construction material used in many engineering structures. The design of concrete structures requires a thorough understanding of their material properties under various loading conditions. Several experimental investigations have been carried out to examine the behavior of concrete. This paper is an attempt to summarize the behavioral aspects of concrete under different loading conditions. Failure models developed out of these experimental investigations are reported in this paper with their merits and demerits.

Automated segmentation of concrete images into microstructures: A comparative study

  • Yazdi, Mehran;Sarafrazi, Katayoon
    • Computers and Concrete
    • /
    • v.14 no.3
    • /
    • pp.315-325
    • /
    • 2014
  • Concrete is an important material in most of civil constructions. Many properties of concrete can be determined through analysis of concrete images. Image segmentation is the first step for the most of these analyses. An automated system for segmentation of concrete images into microstructures using texture analysis is proposed. The performance of five different classifiers has been evaluated and the results show that using an Artificial Neural Network classifier is the best choice for an automatic image segmentation of concrete.

Numerical modeling of an orthotropic RC slab band system using the Barcelona model

  • Kossakowski, Pawel G.;Uzarska, Izabela
    • Advances in Computational Design
    • /
    • v.4 no.3
    • /
    • pp.211-221
    • /
    • 2019
  • Numerical modeling of reinforced concrete structures is a difficult engineering problem, primarily because of the material inhomogeneity. The behaviour of a concrete element with reinforcement can be analyzed using, for example, the Barcelona model, which according to the literature, is one of the most suitable models for this purpose. This article compares the experimental data obtained for an orthotropic concrete slab band system with those predicted numerically using Concrete Damage Plasticity model. Abaqus package was used to perform the calculations.

Determination of representative volume element in concrete under tensile deformation

  • Skarzyski, L.;Tejchman, J.
    • Computers and Concrete
    • /
    • v.9 no.1
    • /
    • pp.35-50
    • /
    • 2012
  • The 2D representative volume element (RVE) for softening quasi-brittle materials like concrete is determined. Two alternative methods are presented to determine a size of RVE in concrete subjected to uniaxial tension by taking into account strain localization. Concrete is described as a heterogeneous three-phase material composed of aggregate, cement matrix and bond. The plane strain FE calculations of strain localization at meso-scale are carried out with an isotropic damage model with non-local softening.

Finite element modelling of reinforced concrete structures with laboratory verification

  • Cheng, Y.M.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.6
    • /
    • pp.593-609
    • /
    • 1995
  • The presence of reinforcement has a significant influence on the stress-strain behaviour of reinforced concrete structures, expecially when the failure stage of the structures is approached. In the present paper, the constrained and non-constrained zones of concrete due to the presence of reinforcement is developed and the stress-stress-strain behaviour of concrete is enhanced by a reinforcement confinement coefficient, Furthermore, a flexible method for the modelling of reinforcement with arbitrary orientation and not passing the nodes of concrete element is also proposed. Numerical examples and laboratory tests have shown that the coefficient and the modelling technique proposed by the author are satisfactory.