• Title/Summary/Keyword: Press Cake

Search Result 59, Processing Time 0.024 seconds

A new model for curbing filtrate loss in dynamic application of nano-treated aqueous mud systems

  • Okoro, Emmanuel E.;Oladejo, Bukola R.;Sanni, Samuel E.;Obomanu, Tamunotonjo;Ibe, Amarachukwu A.;Orodu, Oyinkepreye D.;Olawole, Olukunle C.
    • Advances in nano research
    • /
    • v.9 no.1
    • /
    • pp.59-67
    • /
    • 2020
  • Filter cake formation during rotary drilling operation is an unavoidable scenario, hence there is need for constant improvement in the approaches used in monitoring the cake thickness growth in order to prevent drill-string sticking. This study proposes an improved model that predicts the growth of mud cake thickness overtime with the consideration of the addition of nanoparticles in the formulated drilling fluid system. Ferric oxide, titanium dioxide and copper oxide nanoparticles were used in varying amounts (2 g, 4 g and 6 g), and filtration data were obtained from the HPHT filtration test. The filter cakes formed were further analyzed with scanning electron microscope to obtain the morphological characteristics. The data obtained was used to validate the new filtrate loss model. This model specifically presents the concept of time variation in filter cake formation as against the previous works of constant and definite time. Regression coefficient which is a statistical measure was used to validate the new model and the predicted results were compared with the API model. The new model showed R2 values of 99.9%, and the predictions from the proposed filtration model can be said to be more closely related to the experimental data than that predicted from the API model from the SSE and RMSE results.

A fully coupled thermo-poroelastoplasticity analysis of wellbore stability

  • Zhu, Xiaohua;Liu, Weiji;Zheng, Hualin
    • Geomechanics and Engineering
    • /
    • v.10 no.4
    • /
    • pp.437-454
    • /
    • 2016
  • Wellbore instability problem is one of the main problems that met frequently during drilling, particularly in high temperature, high pressure (HPHT) formations. There are large amount of researches about wellbore stability in HPHT formations, which based on the thermo-poroelastic theory and some achievements were obtained; however, few studies have investigated on the fully coupled thermo-poroelastoplasticity analysis of wellbore stability, especially the analysis of wellbore stability while the filter cake formed. Therefore, it is very necessary to do some work. In this paper, the three-dimensional wellbore stability model which overall considering the effects of fully coupled thermo-poroelastoplasticity and filter cake is established based on the finite element method and Drucker-Prager failure criterion. The distribution of pore pressure, wellbore stress and plastic deformation under the conditions of different mud pressures, times and temperatures have been discussed. The results obtained in this paper can offer a great help on understanding the distribution of pore pressure and wellbore stress of wellbore in the HPHT formation for drilling engineers.

Impacts of sludge retention time on membrane fouling in thermophilic MBR

  • Ince, Mahir;Topaloglu, Alikemal
    • Membrane and Water Treatment
    • /
    • v.9 no.4
    • /
    • pp.245-253
    • /
    • 2018
  • The aim of this study is to investigate the membrane fouling in a thermophilic membrane bioreactor (TMBR) operated different sludge retention times (SRTs). For this purpose, TMBR was operated at four different SRTs (10, 30, 60 and 100 days). Specific cake resistance (${\alpha}$), cake resistance, gel resistance, total resistance, MFI (modified fouling index) and FDR (flux decrease ratio) were calculated for all SRTs. It was observed that flux in the membrane increases with rising SRT although the sludge concentrations in the TMBR increased. The steady state flux was found to be 31.78; 34.70; 39.60 and 43.70 LMH ($Liter/m^2/h$) for the SRTs of 10, 30, 60 and 100 days respectively. The concentrations of extracellular polymeric substance (EPS) and soluble microbial product (SMP) decreased with increasing SRT. The membrane fouling rate was higher at shorter SRT and the highest fouling rate appeared at an SRT of 10 d. Both the sludge cake layer and gel layer had contribution to the fouling resistance, but the gel layer resistance value was dominant in all SRTs.

Optimization in Extraction Conditions of Carotenoids from Citrus unshiu Press Cake by Supercritical Carbon Dioxide (초임계 이산화탄소에 의한 감귤박으로부터 카로테노이드 추출 조건의 최적화)

  • Lim, Sang-Bin;Jwa, Mi-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.1104-1109
    • /
    • 2003
  • Response surface methodology (RSM) was used to investigate the effects of the processing parameters on supercritical $CO_2\;(SC-CO_2)$. extraction of total carotenoids and ${\beta}$-cyptoxanthin from Citrus unshiu press cake. The parameters tested were $SC-CO_2$ pressure, dynamic extraction time, and concentration of ethanol added as the modifier to $CO_2$. Experimental data correlated well with the processing parameters (p<0.01), and there was a high statistically significant multiple regression relationship for the extraction of total carotenoids and ${\beta}-cyrptoxanthin$ ($R^2=0.9789$ and 0.9796, respectively). The optimal processing conditions were extraction pressure 33.4 and 37.3 MPa, extraction time 39.6 and 41.0 min, ethanol concentration 18.6 and 17.0% for total carotenoids and ${\beta}-cryptozanthin$, respectively. Maximum extraction yields predicted by RSM were 61.1 and 95.8% ppm, respectively. The extraction yield of total carotenoids increased asymptotically with the increase of the extraction pressure. It increased in proportion to extraction time and concentration of the cosolvent. The extraction yield of ${\beta}-cryptoxanthin$ increased with extraction pressure, extraction time, and concentration of the cosolvent. The extraction time and the concentration of the cosolvent, and the interaction between extraction time and the concentration of the cosolvent significantly affected the extraction yields of carotenoids from C. unshiu press cake.

Performance and antifouling properties of PVDF/PVP and PSf membranes in MBR: A comparative study

  • Hazrati, Hossein;Karimi, Naser;Jafarzadeh, Yoones
    • Membrane and Water Treatment
    • /
    • v.11 no.2
    • /
    • pp.159-166
    • /
    • 2020
  • In this study, the performance and antifouling properties of polysulfone (PSf) and polyvinylidene fluoride/polyvinylpyrrolidone (PVDF/PVP) membranes in a membrane bioreactor (MBR) were investigated. The membranes were prepared via phase inversion method, and then characterized by a set of analyses including contact angle, porosity and water flux and applied in a lab-scale MBR system. Soluble microbial product (SMP), extracellular polymeric substance (EPS), FTIR, gel permission chromatography (GPC) and particle size distribution (PSD) analyses were also carried out for MBR system. The results showed that the MBR with PSf membrane had higher hydrophobic organic compounds which resulted in formation of larger flocs in MBR. However, in this MBR had high compressibility coefficient of cake layer was higher (n=0.91) compared to MBR with PVDF/PVP membrane (n=0.8); hence, the fouling was more profound. GPC analysis revealed that compounds with molecular weight lower than 2 kDa are more formed on PSf membrane more than PVDF/PVP membrane. The results of FTIR analysis confirmed the presence of polysaccharide and protein compounds on the cake layer of both membranes which was in good agreement with EPS analysis. In addition, the results showed that their concentration was higher for the cake on PSf membrane.

A study on the Thermal Filter Press for the Reduction of Pigment Sludge (안료 슬러지 감량화(減量化)를 위한 열필터프레스 기술(技術)에 관한 연구(硏究))

  • Lee, Jung-Eun;Lee, Jae-Keun
    • Resources Recycling
    • /
    • v.18 no.3
    • /
    • pp.55-61
    • /
    • 2009
  • Dewatering process to remove water from pigment sludge was important in the diverse aspects of the improvement of product quality, curtailment of the drying cost and the transportation. It was difficult to dewater pigment particles with the mechanical forces because the size was fine under $5{\mu}m$. Thermal filter press dewatering equipment composed of squeezing plate and a fixed heating plate was developed to improve the dewaterability of pigment the sludge as supplying the heat from the fixed heating plate to the cake. Several tests that estimate the dewaterability for pigment sludge as with or without squeezing process and the difference of dewatering time was conducted with this equipment. Dewaterability of thermal dewatering under squeezing process was increased about 20% compared with non squeezing process. Under squeezing process, thermal dewatering tests changing dewatering time with 70 and 80 minute were conducted respectively. The water content of cake was more reduced at dewatering time of 80 minute compared with 70 minute, and dewatering velocity was also decreased, which caused the productivity of thermal filter press to drop. It was observed that clogging of filter cloth didn't almost occur because the liquid was discharged from cake layer easily. In this research, it was resulted that the squeezing process and long dewatering time were effective to improve the dewaterability of pigment sludge. So, this thermal filter press equipment was useful for dewatering the fine particle sludge like pigment.

Utilization of Kraft Black Liquor as Resin Binders (접착제(接着劑)로서 크라프트 리그닌 폐액(廢液)의 이용(利用))

  • Park, Kwang-Man;Paik, Ki-Hyon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.1-11
    • /
    • 1987
  • A kraft black liquor obtained from pulping of pine (Pinus densiflora Sieb et Zucc) was used for producing three kinds of adhesive such as black liquor-phenol formaldehyde resin, methyloeated kraft lignin-phenol formaldehyde resin, and lignin cake-phenol resin. In case of producing black liquor-phenol formaldehyde resin, about 60 percent of the phenolic resin could be replaced by black liquor. Also the optimal press condition appeared to be $160^{\circ}C$ for 7 min. (l5.77Kg/$cm^2$ in dry test, 8.54Kg/$cm^2$ in 4 hr. boil test). Phenol could be substituted up to 80-90 percent by methylolated kraft lignin. The suitable conditions of factors affecting bond quality were pH to 2.6, methanol as solvent and 0.2ml formaldehyde per 1g of the adhesives, respectively. The optimal press condition was $150^{\circ}C$ for 4 min. (188.54Kg/$cm^2$ in dry test, 10.08Kg/$cm^2$ in 4 hr. boil test). In preparing lignin cake-phenol resin, a suitable mixing ratio of phenol to powered kraft lignin was one to one by weight. The optimal press condition was $150^{\circ}C$ for 4 min.(18.46Kg/$cm^2$ in dry test, 12.31Kg/$cm^2$ in 4 hr. hoil test).

  • PDF

Separation and flux characteristics in cross-flow ultrafiltration of bovine serum albumin and bovine hemoglobin solutions

  • Hsiao, Ruey-Chang;Hung, Chia-Lin;Lin, Su-Hsia;Juang, Ruey-Shin
    • Membrane and Water Treatment
    • /
    • v.2 no.2
    • /
    • pp.91-103
    • /
    • 2011
  • The flux behavior in the separation of equimolar bovine serum albumin (BSA) and bovine hemoglobin (HB) in aqueous solutions by cross-flow ultrafiltration (UF) was investigated, in which polyacylonitrile membrane with a molecular weight cut-off (MWCO) of 100 kDa was used. BSA and HB have comparable molar mass (67,000 vs. 68,000) but different isoelectric points (4.7 vs. 7.1). The effects of process variables including solution pH (6.5, 7.1, and 7.5), total protein concentration (1.48 and 7.40 ${\mu}M$), transmembrane pressure (69, 207, and 345 kPa), and solution ionic strength (with or without 0.01 M NaCl) on the separation were examined. It was shown that the ionic strength had a negligible effect on separation performance under the conditions studied. Although BSA and HB are not rigid bodies, the flux decline in the present cross-flow UF did not result from the mechanism of cake filtration with compression. In this regard, the specific cake resistance when pseudo steady-state was reached was evaluated and discussed.

Investigation of influence of temperature and solid retention time on membrane fouling in MBR

  • Mirzavandi, Atoosa;Hazrati, Hossein;Ebrahimi, Sirous
    • Membrane and Water Treatment
    • /
    • v.10 no.2
    • /
    • pp.179-189
    • /
    • 2019
  • This study aimed to investigate the effect of temperature and solid retention time (SRT) on membrane fouling in a membrane bioreactors (MBRs). For this purpose, a lab-scale submerged MBR system was used. This system operated at two SRTs of 15 and 5 days, three various temperatures (20, 25 and $30^{\circ}C$) and hydraulic retention time (HRT) of 8 h. The results indicated that decreased the cake layer resistance and increased particles size of foulant due to increasing temperature and SRT. Fourier transform infrared (FTIR) analysis show that the cake layer formed on the membrane surface, contained high levels of proteins and especially polysaccharides in extracellular polymeric substances (EPS) but absorbance intensity of EPS functional groups decreased with temperature and SRT. EEM analysis showed that the peak on the range of Ex/Em=220-240/350-400 in SRT of 15 and temperature of $30^{\circ}C$ indicates the presence of fulvic acid in the cake. In addition, as the temperature rise from 20 to $30^{\circ}C$, concentration of soluble microbial products (SMP) increased and COD removal reached 89%. Furthermore, the rate of membrane fouling was found to increase with decreasing temperature and SRT.

Design and Performance Evaluation of Sludge Dewatering System based on Electrocoagulation and Electroosmosis (전기응집 및 전기탈수을 이용한 슬러지 탈수 성능평가 분석)

  • Shin, Hee-Soo;Yeo, Chang-Sin;Byun, Sang-Hyun;Lee, Jae-Keun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1992-1997
    • /
    • 2003
  • This study is to develop the pretreatment for the excess and digested sludge by electro-coagulation and dewatering. Electrocoagulation is applied to excess and digested sludge before transferring to the piston type press for dewatering. Piston type filter press as a laboratory scale plant was used to estimate the dewaterability. MMD of excess sludge was increased from initial diameter of particles(34.16 ${\mu}m$) to the 87%(64.01 ${\mu}m$) after electrocoagulation. AI electrode is more effective than Fe electrode for the dewaterability of excess sludge. Electrodewatering after electrocoagulation as pretreatment makes the water content of sludge cake $50{\sim}60$ wt%.

  • PDF