• Title/Summary/Keyword: Preservation potential

Search Result 376, Processing Time 0.037 seconds

Overview of Dairy-based Products with Probiotics: Fermented or Non-fermented Milk Drink

  • Hye Ji Jang;Na-Kyoung Lee;Hyun-Dong Paik
    • Food Science of Animal Resources
    • /
    • v.44 no.2
    • /
    • pp.255-268
    • /
    • 2024
  • Probiotic products have long been recognized for their health benefits. Additionally, milk has held a longstanding reputation as a dairy product that offers high-quality proteins and essential micronutrients. As awareness of the impact of food on health grows, interest in functional products such as probiotic dairy products is on the rise. Fermentation, a time-honored technique used to enhance nutritional value and food preservation, has been used for centuries to increase nutritional value and is one of the oldest food processing methods. Historically, fermented dairy products have been used as convenient vehicle for the consumption of probiotics. However, addressing the potential drawbacks of fermentation has recently led to increase in research on probiotic dairy drinks prepared without fermentation. These non-fermented dairy drinks have the advantage of maintaining the original flavors of milk drinks, containing potential health functional probiotics, and being an alternative dairy product that is helpful for probiotics intake. Currently, research on plant-based dairy products is rapidly increasing in the market. These developments might suggest the potential for novel forms of non-fermented dairy beverages with substantial prospects in the food market. This review aims to provide an overview of milk-based dairy beverages, both fermented and non-fermented, and discuss the potential of non-fermented dairy products. This exploration paves the way for innovative approaches to deliver probiotics and nutrition to consumers.

Spatial Distributional Characteristics of Wind-Hole and Governance Strategy (풍혈의 공간적 분포 특징과 관리 방안)

  • Kong, Woo-Seok;Yoon, Kwanghee;Kim, Intae;Lee, Youmi;Oh, Seunghwan
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.3
    • /
    • pp.431-443
    • /
    • 2012
  • Wind holes or air holes, from which cool air blows out during the summer, but mild air comes out during the winter, have provided the phytogeographically important refugia for cryophilous or cold-loving boreal flora during the Holocene period. At present, wind holes are serving as a faraway disjunctive habitat for Pleistocene relict glacial floristic elements, and present an invaluable information to reconstruct the natural history. Present work aims to collate the nationwide distribution and relevant DB on the potential wind holes of Korea based upon media and literature sources, along with geographical informations, such as place name, topographic map, environmental geographical information, flora, monitoring data of Korea National Arboretum, and field survey data. Geographical information on sixty nine wind hole sites have compiled and analyzed on the basis of flora and presence of fossilized periglacial landforms, such as talus, block field, and block stream, and sixteen sites have thereafter carefully selected and scrutinized through field surveys. To maintain a sustainability of wind hole ecosystem, including their original landform, micro-meteorological phenomena and plant community therein as a refugia or habitat for relict plant species of Pleistocene glacial period, appropriate restrictions and preservation measures are required.

Analysis of the Anti-Allergic Activities of Active Components Produced by Solid Fermentation of Phellinus baumii and Ephedra sinica (장수상황버섯과 마황을 이용한 고체발효 추출물로부터 항아토피 활성의 분석)

  • Shin, Yong-Kyu;Heo, Jin-Chul;Lee, Jin-Hyung;Lee, Sang-Han
    • Food Science and Preservation
    • /
    • v.17 no.2
    • /
    • pp.297-300
    • /
    • 2010
  • To evaluate whether active components produced by solid fermentation of Phellinus baumii and Ephedra sinica have potential in ameliorating allergic symptoms in mice, we tested anti-allergic activities in a dinitrofluorobenzene (DNFB)-induced allergic mouse model. DNFB-induced allergic symptoms werereduced to about 50% of control levels by active components produced by solid fermentation of Phellinus baumii and Ephedra sinica, as evaluated by measuring the width of epidermal swelling. H&E staining also revealed that these active components markedly reduced allergic symptoms in the epidermis of the ear. The results indicate that active components produced by solid fermentation of Phellinus baumii and Ephedra sinica have the potential to ameliorateallergic symptoms, and may be useful biomaterial(s) in the neutraceutical or cosmeceutical industry.

Recent advances in natural gas hydrate carriers for gas transportation - A review and conceptual design

  • Kim, Kipyoung;Kim, Youtaek;Kang, Hokeun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.5
    • /
    • pp.589-601
    • /
    • 2014
  • Natural gas hydrate (NGH) is emerging as a new eco-friendly source of energy to replace fossil fuels in the 21st century. It is well known that the Natural Gas Hydrate contains large amount of natural gas about 170 times as much as its volume and it is easy to be stored and transported safely at about $-20^{\circ}C$ under atmospheric pressure due to so called "self-preservation effect". The option of gas transport by gas hydrate pellets carrier has been investigated and developed in various industry and academy. The natural gas hydrate pellet carrier is on major link in a potential gas hydrate process chain, starting with the extraction of natural gas from the reservoir, followed by the production of hydrate pellets and the transportation to an onshore terminal for further processing or marketing. In recent years, Korean project team supported by Korean Government has been working on the development of NGH total systems including novel NGH carrier since 2011. In order to increase the knowledge on the NGH pellet carrier developed and to understand the major hazards that could have significant impact on the safety of the vessel, this paper presents and evaluates the pros and cons of cargo holds, loading and unloading systems through the analysis of current patent technology. Based on the proven and well-known technologies as well as potential measures to mitigate sintering and minimize mechanical stress on the hydrate pellet in the self-preservation state, this study presents the conceptual and basic design for NGH carrier.

Comparison of Anti-Diabetic Activities by Extracts of Grape Cultivar (포도 품종별 추출물의 혈당 완화 활성 비교)

  • Kim, Min-A;Son, Hyeong-U;Yoon, Eun-Kyung;Choi, Yong-Hee;Lee, Sang-Han
    • Food Science and Preservation
    • /
    • v.19 no.3
    • /
    • pp.400-405
    • /
    • 2012
  • To investigate the anti-diabetic activity of ethanol and aqueous peel and seed extracts obtained from three different grape species (Cambell Early, MBA, and Kyoho), alpha-glucosidase inhibitory activity was examined. All extracts showed anti-diabetic activity, especially aqueous extract exhibited inhibitory effect above 70%. Thus, we used aqueous extract to check the potential hypoglycemic effects in a streptozotocin (STZ)-induced diabetic mice model. The results showed that the blood glucose level of STZ-induced diabetic mice decreased drastically after 3 hr when the aqueous extract of Cambell Early seed was treated to the mice model. The aqueous extract of Kyoho seed lessened blood glucose level by 60%. Together, these data indicate that extracts of grape peel and seed (aqueous or ethanol) may have potential in improving hypoglycemic effects in the diabetic symptoms, suggesting that further investigation on biomarker expressions should be rewarding.

Adenosine and Purine Nucleosides Prevent the Disruption of Mitochondrial Transmembrane Potential by Peroxynitrite in Rat Primary Astrocytes

  • Choi, Ji-Woong;Yoo, Byung-Kwon;Ryu, Mi-Kyoung;Choi, Min-Sik;Park, Gyu-Hwan;Ko, Kwang-Ho
    • Archives of Pharmacal Research
    • /
    • v.28 no.7
    • /
    • pp.810-815
    • /
    • 2005
  • Previously, we have shown that astrocytes deprived of glucose became highly vulnerable to peroxynitrite, and adenosine and its metabolites attenuated the gliotoxicity via the preservation of cellular ATP level. Here, we found that adenosine and related metabolites prevented the disruption of mitochondrial transmembrane potential (MTP) in glucose-deprived rat primary astrocytes exposed to 3-morpholinosydnonimine (SIN-1), a peroxynitrite releasing agent. Exposure to glucose deprivation and SIN-1(2h) significantly disrupted MTP in astrocytes, and adenosine prevented it in dose-dependent manner with an $EC_{50}\;of\;5.08{\mu}M$. Adenosine also partially prevented the cell death by myxothiazol, a well-known inhibitor of mitochondrial respiration. Blockade of adenosine deamination or intracellular transport with erythro-9-(-hydroxy-3-nonyl)adenosine (EHNA) or S-(4-nitrobenzyl)-6-thioinosine (NBTI), respectively, completely reversed the protective effect of adenosine. Other purine nucleos(t)ides including inosine, guanosine, ATP, ADP, AMP, ITP, and GTP also showed similar protective effects. This study indicates that adenosine and related purine nucleos(t)ides may protect astrocytes from peroxynitrite-induced mitochondrial dysfunction.

Antioxidative Substances and Their Changes in the Leaves of Persimmon (Diospyros kaki) during Growth (감잎의 성장 중 항산화물질의 함량 변화)

  • 김지현;김귀영
    • Food Science and Preservation
    • /
    • v.4 no.3
    • /
    • pp.323-330
    • /
    • 1997
  • Changes in antioxidative substance levels in eleven different cultivars of persimmon leaves during growth were investigated. In general, the contents of soluble phenols, L-ascorbic acid and flavonoids in astringent persimmon leaves(APL) were higher than those of nonastringent persimmon leaves(NAPL). The soluble phenol contents in APL and NAPL showed a tendency to decrease throughout leaf growth. L-ascorbic acid content in APL decreased rapidly during growth, whereas its content in NAPL reached its highest value at the late of July, and then decreased rapidly. Major flavonoids in APL and NAPL were quercetin and Kaempferol which were present in conjugate forms. Before acid hydrolysis, the contents of kaempferol and quercetin in APL and NAPL remained at a relatively constant level until the late of July, and then decreased slightly. After acid hydrolysis, kaempferol contents in APL and NAPL varied significantly by cultivar and growth stage, while quercetin contents decreased slowly until the late of July, and then increased drastically, reached a maximum at the early of August, afterward continuously decreased. These results suggest that APL harvested at the early of June may be useful as potential sources of natural antioxidants.

  • PDF

Use of Platelet-Rich Fibrin in Oral and Maxillofacial Surgery

  • Jeong, Kyung-In;Kim, Su-Gwan;Oh, Ji-Su
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.34 no.2
    • /
    • pp.155-161
    • /
    • 2012
  • Platelet-rich fibrin (PRF) is a strong but flexible fibrin including a enrich platelet which contain growth factors and cytokines. PRF can be made very simply and requires no artificial additives unlike platelet-rich plasma. While PRF is remodeled and released in the tissue, this induces cell growth, vascularization, collagen synthesis, osteoblast differentiation and an anti-inflammatory reaction. Taking advantage of these functions, PRF can stimulate regeneration of bone and soft tissue in a diverse number of ways during the course of hemostasis, wound coverage, preservation, and reconstruction of alveolar bone. Moreover, the use of PRF to improve bone regeneration has become a recent technique in implantology. In this study, through a literature review of PRF's existing clinical applications, we classified a range of potential PRF oral and maxillofacial surgery applications including preservation of extraction sockets, guided bone graft, sinus lift, dressing and periodontal treatment. This trial gave us chance to confirm the usefulness of PRF. Recently, updated clinical studies results concerning skin and tendon wound healing have become available. These results suggest that the usage of RPF will gradually expand.

Isolation and characterization of a lytic Salmonella Typhimurium-specific phage as a potential biofilm control agent

  • Su-Hyeon Kim;Mi-Kyung Park
    • Food Science and Preservation
    • /
    • v.30 no.1
    • /
    • pp.42-51
    • /
    • 2023
  • This study aimed to characterize a lytic Salmonella Typhimurium-specific (ST) phage and its biofilm control capability against S. Typhimurium biofilm on polypropylene surface. ST phage was isolated, propagated, and purified from water used in a slaughterhouse. The morphology of ST phage was observed via transmission electron microscopy. Its bactericidal effect was evaluated by determining bacterial concentrations after the phage treatment at various multiplicities of infection (MOIs) of 0.01, 1.0, and 100. Once the biofilm was formed on the polypropylene tube after incubation at 37℃ for 48 h, the phage was treated and its antibiofilm capability was determined using crystal violet staining and plate count method. The phage was isolated and purified at a final concentration of ~11 log PFU/mL. It was identified as a myophage with an icosahedral head (~104 nm) and contractile tail (~90-115 nm). ST phage could significantly decrease S. Typhimurium population by ~2.8 log CFU/mL at an MOI of 100. After incubation for 48 h, biofilm formation on polypropylene surface was confirmed with a bacterial population of ~6.9 log CFU/cm2. After 1 h treatment with ST phage, the bacterial population in the biofilm was reduced by 2.8 log CFU/cm2. Therefore, these results suggest that lytic ST phage as a promising biofilm control agent for eradicating S. Typhimurium biofilm formed on food contact surfaces.

Enzymatic preparation and antioxidant activities of protein hydrolysates from hemp (Cannabis sativa L.) seeds

  • Hyeon-Ji Yoon;Gyu-Hyeon Park;Yu-Rim Lee;Jeong-Min Lee;Hyun-Lim Ahn;Syng-Ook Lee
    • Food Science and Preservation
    • /
    • v.30 no.3
    • /
    • pp.434-445
    • /
    • 2023
  • Hemp (Cannabis sativa L.) seeds have recently been attracting attention as a new high-value-added food material owing to their excellent nutritional properties, and research on the development of functional food materials using hemp seeds is actively progressing. This study aimed to evaluate the antioxidant properties of hemp seed protein hydrolysates. Protein hydrolysates were prepared from defatted hemp seed powder (HS) by enzymatic hydrolysis using five different proteases (alcalase, bromelain, flavourzyme, neutrase, and papain). 2,4,6-trinitrobenzene sulfonic acid (TNBS) assay and SDS-PAGE analysis revealed that HS showed a high degree of hydrolysis after treatment with each enzyme except papain. The total polyphenol content of the protein hydrolysates (<3 kDa) and the RC50 values obtained from two different antioxidant tests showed that alcalase hydrolysate (HSA) had a relatively high level of antioxidant capacity. In addition, treatment with HSA (25-100 ㎍/mL) significantly inhibited linoleic acid peroxidation. These results suggest that hemp seed protein hydrolysates are potential sources of natural antioxidants. Future studies will focus on the identification of active peptides from HSA.