• Title/Summary/Keyword: Preprocessed image

Search Result 84, Processing Time 0.025 seconds

Efficient Shear-warp Volume Rendering using Spacial Locality of Memory Access (메모리 참조 공간 연관성을 이용한 효율적인 쉬어-왑 분해 볼륨렌더링)

  • 계희원;신영길
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.3_4
    • /
    • pp.187-194
    • /
    • 2004
  • Shear-Warp volume rendering has many advantages such as good image Quality and fast rendering speed. However in the interactive classification environment it has low efficiency of memory access since preprocessed classification is unavailable. In this paper we present an algorithm using the spacial locality of memory access in the interactive classification environment. We propose an extension model appending a rotation matrix to the factorization of viewing transformation, it thus performs a scanline-based rendering in the object and image space. We also show causes and solutions of three problems of the proposed algorithm such as inaccurate front-to-back composition, existence of hole, increasing computational cost. This model is efficient due to the spacial locality of memory access.

Change of Coastal Ocean According to Kwang Yang Bay Development based on Landsat TM Images

  • Lee, Byung-Gul;Choo, Hyo-Sang;Lee, Gyu-Hyung
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.3
    • /
    • pp.149-156
    • /
    • 2000
  • This study presents an investigation of the changes that have occurred in the coastal ocean area of Kwangyang Bay located in the South Coastal region of Korea using remote sensing data based on Landsat Thematic Mapper (TM) multispectral digital data from 1988 and 1996. The coastal changes were detected using the digital histogram method and vector trace method. All the images were preprocessed, i.e. geometrically corrected, before the training set selection. when comparing the histograms of 7-band TM data, it was found that the band 5 image exhibited two critical Digital Number(DN) peaks, thereby indicating new coastal water and coastal land data. Based on this information, the coastal ocean area of the band 5 image was calculated using the vector tracing method supported by a CAD program. The result shows that the coastal ocean area decreased by about 5 % between 1988 to 1994. Accordingly, this gives a strong indication that the continuing land development will have a serious impact on the ecosystem of Kwangyang Bay.

  • PDF

A Study on the Recognition of Defected Fingerprint Using Chain Code (체인 코드를 이용한 훼손된 지문의 인식에 관한 연구)

  • 조민환
    • Journal of the Korea Society of Computer and Information
    • /
    • v.8 no.4
    • /
    • pp.63-68
    • /
    • 2003
  • Almost the system are usually taken by means of shapes and positions of ridge's end-points and bifurcation in the fingerprint recognition. but we studied about recognition of polluted fingerprint by chain code ridges. the results and sequence of processing are summarized as follows. (1)Capture several kinds of polluted fingerprint image. (2)Preprocessing(median filtering for removing noises, local and global histogram equalization, dilation and erosion, thinning and remove pseudo image), (3)Rebuild ridge line after Least Square Processing, (4)Compute distribution of chain code vector, (5)The results are almost same values of each vector of preprocessed fingerprint images. From the results, we can surmised more successful fingerprints recognition system in combination with other system by singular points

  • PDF

Effect of a Preprocessing Method on the Inversion of OH* Chemiluminescence Images Acquired for Visualizing SNG Swirl-stabilized Flame Structure (SNG 선회 안정화 화염구조 가시화를 위한 OH* 자발광 이미지 역변환에서 전처리 효과)

  • Ahn, Kwang Ho;Song, Won Joon;Cha, Dong Jin
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.1
    • /
    • pp.24-31
    • /
    • 2015
  • Flame structure, which contains a useful information for studying combustion instability of the flame, is often quantitatively visualized with PLIF (planar laser-induced fluorescence) and/or chemiluminescence images. The latter, a line-integral of a flame property, needs to be preprocessed before being inverted, mainly due to its inherent noise and the axisymmetry assumption of the inversion. A preprocessing scheme utilizing multi-division of ROI (region of interest) of the chemiluminescence image is proposed. Its feasibility has been tested with OH PLIF and $OH^*$ chemiluminescence images of SNG (synthetic natural gas) swirl-stabilized flames taken from a model gas turbine combustor. It turns out that the multi-division technique outperforms two conventional ones: those are, one without preprocessing and the other with uni-division preprocessing, reconstructing the SNG flame structure much better than its two counterparts, when compared with the corresponding OH PLIF images. It is also found that the Canny edge detection algorithm used for detecting edges in the multi-division method works better than the Sobel algorithm does.

Effects of Preprocessing and Feature Extraction on CNN-based Fire Detection Performance (전처리와 특징 추출이 CNN기반 화재 탐지 성능에 미치는 효과)

  • Lee, JeongHwan;Kim, Byeong Man;Shin, Yoon Sik
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.4
    • /
    • pp.41-53
    • /
    • 2018
  • Recently, the development of machine learning technology has led to the application of deep learning technology to existing image based application systems. In this context, some researches have been made to apply CNN (Convolutional Neural Network) to the field of fire detection. To verify the effects of existing preprocessing and feature extraction methods on fire detection when combined with CNN, in this paper, the recognition performance and learning time are evaluated by changing the VGG19 CNN structure while gradually increasing the convolution layer. In general, the accuracy is better when the image is not preprocessed. Also it's shown that the preprocessing method and the feature extraction method have many benefits in terms of learning speed.

The Obstacle Avoidance Algorithm of Mobile Robot using Line Histogram Intensity (Line Histogram Intensity를 이용한 이동로봇의 장애물 회피 알고리즘)

  • 류한성;최중경;구본민;박무열;윤경섭;윤석영
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.331-334
    • /
    • 2002
  • In this paper, we present two types of vision algorithm that mobile robot has CCD camera. for obstacle avoidance. This is simple algorithm that compare with grey level from input images. Also, The mobile robot depend on image processing and move command from PC host. we has been studied self controlled mobile robot system with CCD camera. This system consists of digital signal processor, step motor, RF module and CCD camera. we used wireless RF module for movable command transmitting between robot and host PC. This robot go straight until recognize obstacle from input image that preprocessed by edge detection, converting, thresholding. And it could avoid the obstacle when recognize obstacle by line histogram intensity. Host PC measurement wave from various line histogram each 20 Pixel. This histogram Is ( x , y ) value of pixel. For example, first line histogram intensity wave from ( 0, 0 ) to ( 0, 197 ) and last wave from ( 280, 0 ) to ( 280, 197 ). So we find uniform wave region and nonuniform wave region. The period of uniform wave is obstacle region. we guess that algorithm is very useful about moving robot for obstacle avoidance.

  • PDF

Video Expression Recognition Method Based on Spatiotemporal Recurrent Neural Network and Feature Fusion

  • Zhou, Xuan
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.337-351
    • /
    • 2021
  • Automatically recognizing facial expressions in video sequences is a challenging task because there is little direct correlation between facial features and subjective emotions in video. To overcome the problem, a video facial expression recognition method using spatiotemporal recurrent neural network and feature fusion is proposed. Firstly, the video is preprocessed. Then, the double-layer cascade structure is used to detect a face in a video image. In addition, two deep convolutional neural networks are used to extract the time-domain and airspace facial features in the video. The spatial convolutional neural network is used to extract the spatial information features from each frame of the static expression images in the video. The temporal convolutional neural network is used to extract the dynamic information features from the optical flow information from multiple frames of expression images in the video. A multiplication fusion is performed with the spatiotemporal features learned by the two deep convolutional neural networks. Finally, the fused features are input to the support vector machine to realize the facial expression classification task. The experimental results on cNTERFACE, RML, and AFEW6.0 datasets show that the recognition rates obtained by the proposed method are as high as 88.67%, 70.32%, and 63.84%, respectively. Comparative experiments show that the proposed method obtains higher recognition accuracy than other recently reported methods.

Stabilization of Power System using Self Tuning Fuzzy controller (자기조정 퍼지제어기에 의한 전력계통 안정화에 관한 연구)

  • 정형환;정동일;주석민
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.58-69
    • /
    • 1995
  • In this paper GFI (Generalized Fuzzy Isodata) and FI (Fuzzy Isodata) algorithms are studied and applied to the tire tread pattern classification problem. GFI algorithm which repeatedly grouping the partitioned cluster depending on the fuzzy partition matrix is general form of GI algorithm. In the constructing the binary tree using GFI algorithm cluster validity, namely, whether partitioned cluster is feasible or not is checked and construction of the binary tree is obtained by FDH clustering algorithm. These algorithms show the good performance in selecting the prototypes of each patterns and classifying patterns. Directions of edge in the preprocessed image of tire tread pattern are selected as features of pattern. These features are thought to have useful information which well represents the characteristics of patterns.

  • PDF

Classification of Fingerprints using Fast Fourier Transform (고속 퓨리에 변환을 이용한 지문의 분류)

  • Lee, Jung-Moon;Park, Sin-Jae;Kwon, Yong-Ho
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.295-302
    • /
    • 1998
  • Classification of fingerprints is one of the major subjects on which many researchers have been studying for efficient identification. But fingerprints should be preprocessed in various ways prior to being classified. Factors such as the accuracy and the processing time should be considered in classification of fingerprints. In this paper, we propose a method for classifying fingerprints into several frequent patterns. This method consists of two stages. A fingerprint image is first converted to a skeleton form to find out the center. Then it is identified as a member of one of preclassified pattern by the frequency domain feature. Experiments show that the proposed method is quite useful in classifying fingerprints into typical patterns.

  • PDF

Comparative Study of Deep Learning Algorithm for Detection of Welding Defects in Radiographic Images (방사선 투과 이미지에서의 용접 결함 검출을 위한 딥러닝 알고리즘 비교 연구)

  • Oh, Sang-jin;Yun, Gwang-ho;Lim, Chaeog;Shin, Sung-chul
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.687-697
    • /
    • 2022
  • An automated system is needed for the effectiveness of non-destructive testing. In order to utilize the radiographic testing data accumulated in the film, the types of welding defects were classified into 9 and the shape of defects were analyzed. Data was preprocessed to use deep learning with high performance in image classification, and a combination of one-stage/two-stage method and convolutional neural networks/Transformer backbone was compared to confirm a model suitable for welding defect detection. The combination of two-stage, which can learn step-by-step, and deep-layered CNN backbone, showed the best performance with mean average precision 0.868.