• 제목/요약/키워드: Prepreg

검색결과 226건 처리시간 0.026초

유한요소해석을 이용한 CF&GF Hybrid Prepreg 적층 패턴에 따른 Z-Spring의 구조해석 (Finite Element Method Based Structural Analysis of Z-Spring with CF&GF Hybrid Prepreg Lamination Patterns)

  • 김정근;최선호;김영근;김홍건;곽이구
    • 한국기계가공학회지
    • /
    • 제20권3호
    • /
    • pp.60-67
    • /
    • 2021
  • Recently, research attention has been focused on vibration-free vehicles to transport small numbers of expensive electronic products. Vibration-free vehicles can be used to transport expensive test equipment or semiconductors, mainly produced in the domestic IT industry, and can serve as a readily available transportation system for short driving distances due to the increased efficiency on narrow national highways. This study was aimed at developing a Z-Spring to minimize the vibration by installing an air spring instead of the plate spring applied to conventional freight cars and to prevent the damage of the loaded cargo from the shock occurring during movement. The mechanical properties (elastic modulus, tensile strength, and shear strength) of carbon fiber (CF) and glass fiber (GF) prepreg were derived, and ANSYS ACP PrepPost analyses were performed. It was observed that in the case of hybrid composites, the total deformation and equivalent stress are higher than that of CFRP; however, in terms of the unit cost, the hybrid Z-Spring is more inexpensive and durable compared to the GF.

마이크로파 복합재 성형 공정을 이용한 폴리프로필렌 접착층의 모드 I 에너지 해방률에 대한 실험적 연구 (Experimental Study on Mode-I Energy Release Rate of Polypropylene Adhesive Layer Manufactured by Microwave Composite Forming Process)

  • 박으뜸;김태준;김정;강범수;송우진
    • 소성∙가공
    • /
    • 제31권1호
    • /
    • pp.29-38
    • /
    • 2022
  • Recently, the composite material market is gradually growing. Various composite forming processes have been developed in order to reduce the production cost of the composite material. Unlike the conventional forming process, the microwave composite forming process has the advantage of reducing the processing time because the composite material is heated directly or indirectly at the same time. Due to this advantage, in this study, a double cantilever beam test was conducted with specimens manufactured by the microwave composite forming process. The purpose of this study was to compare mode-I energy release rate for specimens manufactured by prepreg compression forming and microwave composite forming processes. First, a microwave oven was proposed to conduct the microwave composite forming process. Double cantilever beam specimens were manufactured. After that, the double cantilever beam test was conducted to obtain the mode-I energy release rate. Mode-I energy release rates of specimens manufactured by the microwave composite forming and prepreg compression forming processes were then compared. As a result, mode-I energy release rates of specimens fabricated by the microwave composite forming process were similar to those fabricated with the prepreg compression forming process with a relatively reduced process time.

전자파 반사재료로 사용되는 탄소섬유/에폭시 복합재료의 적층 탄소섬유 방향성이 마찰특성에 미치는 영향 (Tribological Properties of Laminated Fiber Orientation in Carbon Fiber/Epoxy Composites for Reflecting Material of the Electromagnetic Wave)

  • 천상욱;김윤명;강호종
    • 공업화학
    • /
    • 제10권5호
    • /
    • pp.778-783
    • /
    • 1999
  • 전자파 반사재료로 사용되는 탄소섬유/에폭시 복합재료의 탄소섬유 배향이 마찰특성에 미치는 영향을 살펴보았다. 마찰 시, 상대 마찰 면과 탄소 섬유/에폭시 복합재료의 적층 방향이 수직인 경우가 수평인 경우에 비해 우수한 마찰특성을 나타내었다. 이는 마찰 면과 복합재료의 적층 방향이 수평인 경우, 에폭시와 탄소섬유의 delamination이 상대적으로 많이 일어나기 때문이다. 탄소섬유 배향에 따른 마찰특성은 마찰 면과 복합재료의 적층 방향이 수직인 경우, 탄소 섬유가 단일 방향으로 배향된 $0/0^{\circ}$의 복합재료가 다방향 배향인 $0/45/90/-45^{\circ}$$0/90^{\circ}$ 복합재료에 비해 상대적으로 뛰어난 마찰특성을 나타내었다. 이는 탄소섬유의 배향 방향에 따라 마찰 면에 접촉하는 탄소섬유의 접촉면적이 변화되고 그 결과, 마찰에 의한 탄소섬유와 에폭시의 debonding 정도가 변화되기 때문이다. 이와는 달리 마찰 면과 적층 방향이 수평인 경우탄소섬유에 가해지는 응력의 종류에 따라 다른 마찰특성을 나타내며 인장응력이 작용하는 $0/90^{\circ}$로 탄소섬유가 배향된 복합재료가 가장 우수한 마찰특성을 갖는다. 마찰면과 탄소섬유 배향에 따라 마찰속도는 마찰계수에 영향을 미치지 못하는 반면 마멸지수와는 비례관계가 있음을 확인할 수 있었다.

  • PDF

흡수에 의한 FRP의 내구성에 관한 연구 (Study on the durability of fiber reinforced plastic by moisture aborsoption)

  • 문창권;구자삼
    • 한국해양공학회지
    • /
    • 제11권2호
    • /
    • pp.48-56
    • /
    • 1997
  • This work has been investigated in order to study the influence of the moisture absorption on the mechanical pf the glass fiber/epoxy resein composites and the carbon fiber/epoxy resein composites. The types of glass fiber used in the glass fiber/epoxy resein composites were randomly oriented fiber and plain fabric fiber. And carbon fiber.epoxy resein composites was laminated with fabric prepreg which was formed with carbon fiber and epoxy resein. Both composites were immersed up to 100 days in distilled water at $80^{\circ}C$, and then dried up to 3 days in an oven at 80$80^{\circ}C$. Both composites were measured for the weight gain of water(wt.%) and tensile strength through immersion and dry time. Consequently, it was found that the tensile strength of thw glass fiber/epoxy resein composites and the carbon fiber/epoxy resein composites were reduced proportionally to the moisture absortion rate. Also, the tensile strength of glass fiber composites was decreased more than that of the carbon fiber composites. Additionally, it was found that the tensile strength of all composites which decreased by moisture absorption were partly recovered by drying in an oven at 80$80^{\circ}C$.

  • PDF

정적 하중을 고려한 풍력 터빈 복합재 블레이드의 구조해석과 안전도 설계 (Structural analysis and safety design of composite wind turbine blades considering static loads)

  • 최재혁;이재환;신상준
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.57.1-57.1
    • /
    • 2011
  • 본 논문에서는 소음을 저감하고 구조적 안전도를 향상시키기 위하여 10kW급 소형 복합재 풍력터빈 블레이드를 해석, 설계하였다. 풍력터빈 블레이드 설계의 기본 사항에 맞추어 블레이드의 스팬 길이는 약 4m, 중량은 30kg 내외가 되도록 설정하였다. 풍력발전기용 블레이드는 경량화가 중요하므로 유리섬유복합재 (glass fiber reinforce pastics), 탄소섬유복합재 (carbon fiber reinforced plastics)가 사용되었다. 본 설계에서는 Carbon prepreg (WSN3KY), Carbon UD(UIN150c), E-glass 등을 사용하였다. 상용 유한요소 프로그램인 NASTRAN을 이용해 Carbon prepreg (WSN3KY), Carbon UD (UIN150c)의 탄소섬유복합재만으로 구성된 블레이드 구조해석을 수행한 결과 중량 조건 및 강도의 안전도는 충족되었으나, 높은 가격을 감안하여 E-glass와 조합하여 블레이드를 재설계할 예정이다. 이번 설계는 소형 풍력발전용 블레이드 설계이므로 좌굴은 고려하지 않았으며, 향후 필요에 따라서 좌굴 및 피로해석도 수행하여 검증할 예정이다. 그리고 블레이드가 복합재로 구성되면 감쇠력이 감소할 가능성이 있다. 탄소섬유복합재로만 구성된 블레이드 구조해석에서도 최대 40cm의 변형이 예측되었으며, 감쇠값 저하 문제도 고려하여야 될 것 같아 BEMT (Blade Element Momentum Theory) 공력모델을 이용해 구조-유체 연성 결합 해석을 수행할 계획이다.

  • PDF

섬유강화 적층복합재의 열림모드 파괴특성 향상을 위해 $Ar^+$ 이온도움반응법을 적용한 프리프레그의 표면처리 연구 (A Study on the Surface Treatment of Prepreg with $Ar^+$ Ion to Increase Mode I Fracture Characteristics of Fiber-Reinforced Composites)

  • 이경엽;지창헌;양준호
    • 대한기계학회논문집A
    • /
    • 제24권11호
    • /
    • pp.2771-2776
    • /
    • 2000
  • In this work, the effect of surface treatment of prepreg on the mode I fracture behavior was studied. Unidirectional (0-deg) double cantilever beam (DCB) specimens were used for fracture tests. Two groups of DCB specimens were made: the first group was made of prepregs surface-treated by Ar(sup)+ ion beam under oxygen environment and the second group was made of regular prepregs. For both groups, fracture resistance curve (R-curve) was determined and compared to each other, Results showed that resistance behavior of the first group is better than that of the second group. That is, mode I fracture toughness, G(sub)Ic of the first group is 24% larger than that of the second group. SEM examination shows that the improvement of G(sub)Ic is due to the increase of interfacial strength between plies.

Prediction of Deterioration Rate for Composite Material by Moisture Absorption

  • Kim, Yun-Hae;An, Seung-Jun;Jo, Young-Dae;Bae, Chang-Won;Moon, Kyung-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권2호
    • /
    • pp.296-302
    • /
    • 2010
  • If the fiber reinforced plastic is exposed to the moisture for a long period of time, most of moisture absorption occurs on the resin place, thus dropping cohesiveness between the molecules as the water molecules permeated between high molecular chains grant high molecular mobility and flexibility. Also as the micro crack occurs due to the permeation of moisture on the interface of glass fiber and epoxy resin, it is developed to the overall damage of interface place. Hence, the study on absorption is essential as the mechanical and physical properties of fiber reinforced composites are reduced. However, the study on absorption has the inconvenience needing to expose composite materials to fresh water or seawater for 1 month or up to 1 year. Therefore, this study has exposed fiber reinforced composites to fresh water and has developed a model with an accuracy of 98% after comparing the analysis value obtained by using ANSYS while basing on the experimental value of property decline by absorption and the basic properties of glass fiber and epoxy resin used in the experiment.

인터넷 기반 복합재 보수 (The Internet-based Composite Repair)

  • 추원식;안성훈
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 춘계학술발표대회 논문집
    • /
    • pp.139-142
    • /
    • 2003
  • As composite materials are gaining wide acceptance in aircraft structure, repair of damaged composite is becoming an important issue. The issues in composite repair include high cost, material interchangeability, water ingression, and structural integrity. To address these problems, researchers have studied on the composite repair in various aspects. In this paper, an Internet-based advisory service (called Repair Advisory Service, RAS) for composite repair is proposed to increase efficiency for repair process. In the RAS system the web browser is used as its user interface, which provides easy access to the service. The RAS server provides web-based tools for failure prediction, Structural Repair Manual (SRM), automated prepreg cutting process, material properties, inventory and knowledge base. The computer codes implemented for repair design estimate the tensile failure and shear failure of repaired structures. The prediction of failure is based on the maximum strain criterion for tensile failure while elastic-perfect plastic shear failure model is applied for interfacial failure. The OEM's SRM is provided in the PDF format for viewing and searching by web browsers instead of looking up paper version SRM. The knowledge base in this site offers a room to share and distribute ideas, memos, publications, or suggestions from the repair engineers. The fabrication tool of RAS reads repair geometry from engineers then generates a CNC toolpath to cut prepreg patches. The RAS service is open to public and available at http://nano.gsnu.ac.kr/. Broad feedback from field technicians and engineers is welcome to improve the usefulness of RAS.

  • PDF

하니컴 샌드위치 Panel을 이용한 LCD/PDP생산공정용 고기능성 복합 신소재 파렛트의 최적설계 (The Optimum Design of the Light-weight Composite Pallet Plank for Assembly Line of LCD/PDP by using Honeycomb Sandwich Panel)

  • 김윤해;최병근;손진호;조영대;엄수현;우병훈
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.388-394
    • /
    • 2005
  • A typical honeycomb sandwich panel consists of two thin, high-strength facings bonded to a thick, light-weight core. Each component by itself is relatively weak and flexible, but when it combind in a sandwich panel they produce a structure that is stiff, strong, and lightweight. In addition to use in honeycomb sandwich panels, honeycomb is used for energy absorption, radio frequency shielding, light diffusion, and to direct air flow.Accordingly, the usage of honeycomb sandwich structure is very widely applied to the aircraft, the automobile, and marine industry, etc., because of these advantages. Generally, this honeycomb sandwich structure is manufactured by autoclave process.In this study, the honeycomb sandwich structure was produced by prepreg. To prove the suitability the honeycomb sandwich structure with prepreg, The optimum design of the skin materials and honeycomb sandwich structure were evaluated with the theory of stress analysis.

  • PDF