• Title/Summary/Keyword: Prepreg

Search Result 228, Processing Time 0.021 seconds

Cure simulation for a thick glass/epoxy laminate (유리섬유 강화 후판 복합재료의 경화공정 해석)

  • 오제훈;이대길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.53-58
    • /
    • 2000
  • During the curing process of thick glass/epoxy laminates, a substantial amount of temperature lag and overshoot at the center of the laminates is usually experienced due to the large thickness and low thermal conductivity of the glass/epoxy composites. Also, it requires a longer time for full and uniform consolidation. In this work, temperature, degree of cure and consolidation of a 20mm thick unidirectional glass/epoxy laminate were investigated using an experiment and a 3-dimentional numerical analysis considering the exothermic reaction. From the experimental and numerical results, it was found that the experimentally obtained temperature profile agreed well with the numerical one and the cure cycle recommended by the prepreg manufacturer should be modified to prevent a temperature overshoot and to obtain full consolidation.

  • PDF

Modal Analysis and Failure Safety Estimation for the Satellite Antenna System Composed of Sandwich Structure with Laminated Face Sheet (적층된 외피를 갖는 샌드위치로 구성된 위성체 안테나 시스템의 모드 해석과 파손안전성 판별)

  • Oh, Se-Hee;Han, Jae-Hung;Oh, Il-Kwon;Shin, Won-Ho;Kim, Chun-Gon;Lee, In;Park, Jong-Heung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.228-233
    • /
    • 2001
  • Satellite system experiences severe mechanical loads during the launch period. Therefore, positive margin of safety of the satellite system must be demonstrated for every possible mechanical loading condition during the launch period. This paper presents modal and stress analysis result due to quasi-static loads for the satellite antenna system. The failure tendency for the sandwich construction of the satellite antenna system has been studied with various lamination angles of unidirectional prepreg.

  • PDF

A Study on the Analysis of Causes & Minimizing of Defects at Composite Materials Sandwich Aircraft Structure in Autoclave Processing (항공기용 복합재료 샌드위치 구조물의 오토클레이브 성형시 발생되는 결함 원인 분석과 그 최소화 방안)

  • 권순철;임철문;최병근;이세원;한중원;김윤해
    • Composites Research
    • /
    • v.14 no.1
    • /
    • pp.22-29
    • /
    • 2001
  • The purpose of this paper is to determine the effect of the autoclave inner pressure rate, heat-up rate, tool round angle, Thickness of core, height of joggle on defects, and to minimize the defects of aircraft sandwich structure reinforced with honeycomb core occurred in autoclave processing. The results showed that the geometry of aircraft sandwich structure and tool such as tool round angle, thickness of core, height of joggle, and the autoclave cure conditions such as inner pressure rate, heat up rate strongly affected the core movement, core wrinkle, bridge phenomenon of prepreg and depression of core that occurred in autoclave processing.

  • PDF

Variation of Tow Geometry according to Mold Property and Shear Angle during Draping on 3D Curved Surfaces (3 차원 곡면 드레이핑 중 금형의 물성과 전단각에 따른 토우구조의 변화)

  • Chung, Jee-Gyu;Chang, Seung-Hwan
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.154-157
    • /
    • 2005
  • This paper aims to investigate the tow deformation pattern with respect to shear angle and mold property during draping of plain weave carbon/epoxy prepreg. Aluminum and PVC foams with different foam density are used for the draping hemisphere molds with 250 mm diameters. Microscopic observation reveals that tow parameters like crimp angle and Y-directional tow intervals are influenced by shear angle and mold density at the same time. The correlation between crimp angle and Y-directional tow interval is also found out.

  • PDF

Minimum Weight Design of Laminated Composite Panel under Combined Loading (조합하중이 작용하는 복합적층 패널의 최소중량화설계)

  • Lee Jong-Sun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.1
    • /
    • pp.95-101
    • /
    • 2006
  • Minimum weight design of laminated composite panel under combined loading was studied using linear and nonlinear deformation theories and by closed-form analysis and finite difference energy methods. Various buckling load factors are obatined for laminated composite panels with rectangular type longitudinal stiffeners and various longitudinal length to radius ratios, which are made from Carbon/Epoxy USNl25 prepreg and are simply-supported on four edges under combined loading, and then for them, minimum weight design analyses are carried out by the nonlinear search optimizer, ADS. This minimum weight design analyses are constructed with various process such as the simple design process, test simulation process and sensitivity analysis. Subseguently, the buckling mode shapes are obtained by buckling and minimum weight analyses.

A Study on Energy Absorption Characteristics of Lightweight Structural Member according to Stacking Conditions (적층구성 변화에 따른 경량화 구조부재의 에너지 흡수 특성)

  • Choi, Ju-Ho;Yang, In-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.241-245
    • /
    • 2012
  • In this study, one type of circular shaped composite tube was used, combined with reinforcing foam and without foam. Furthermore, CFRP (Carbon Fiber Reinforced Plastic) circular member manufactured from CFRP prepreg sheet for lightweight design. CFRP is an anisotropic material which is the most widely adapted lightweight structural member. The crashworthy behavior of circular composite material tubes subjected to static axial compression under same conditions is reported in this paper. The collapse mode during the failure process were observed and analyzed. The behavior of polymeric foams to the tubes crashworthiness were also investigated.

Structural Dsign of FRP Wind Turbine Blade (섬유강화 복합재료 풍차날개의 구조설계)

  • 강수춘;김동민;전완주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.162-174
    • /
    • 1992
  • Blades are one of the critical parts of the wind machine. This paper presents a design procedure for the blade of a 7m diameter horizontal axis wind turbine with the constraint conditions of stresses and fundamental frequency. This blade consists of glass/polyester woven fabric and unidirectional prepreg. It was firstly designed by the classical beam theory on the assumption that torque box sustains all external loads and the reliability of the blade was then inspected in the preliminary estimation by using FEM.

Minimum Weight Design of Stiffened Laminated Composite Flat Panel (복합적층 평패널의 최소중량화설계)

  • 원종진;이종선;윤희중;홍석주
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.3
    • /
    • pp.159-163
    • /
    • 2003
  • This study is object to minimum weight design of stiffened laminated composite flat panel. Various buckling load factors are obtained for stiffened laminated composite flat panels with rectangular type longitudinal stiffeners and various aspect ratios, which are made from Carbon/Epoxy USN150 prepreg and are simply-supported on four edges under uniaxial compression.

  • PDF

Energy Absorption Characteristics of CFRP/Foam Circular Members according to Interface Number (계면수 변화에 따른 CFRP/Foam 원형부재의 에너지 흡수특성)

  • Choi, Ju-Ho;Lee, Kil-Sung;Yang, In-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.603-608
    • /
    • 2010
  • In this study, one type of circular shaped composite tube was used, combined with reinforcing foam and without foam. Furthermore, CFRP(Carbon Fiber Reinforced Plastic) circular member manufactured from CFRP prepreg sheet for lightweight design. CFRP is an anisotropic material which is the most widely adapted lightweight structural member. The crashworthy behavior of circular composite material tubes subjected to static axial compression under same conditions is reported in this paper. Test was executed in order to compare the results to the energy absorption and collapse shape. The collapse mode during the failure process were observed and analyzed. The behavior of polymeric foams to the tubes crashworthiness were also investigated. According to the experimental results, specimens filled with foam are higher total energy absorption than the other specimens not filled with the foam.

Influence of Bonding Strength on Surface Pattern in Bonding of Carbon Fiber Reinforced Plastic and Metal (탄소 섬유 강화 플라스틱과 금속의 접합에서 표면 패턴에 따른 접합 강도 영향)

  • Kim, Ji-Hun;Cheong, Seong-Kyun;Kim, Joohan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.4
    • /
    • pp.430-435
    • /
    • 2017
  • The effect of the surface profile on CFRP and aluminum metal bonding was studied. A small number of steps were made on the aluminum surface, and the shear stress and elongation were measured using a shear test after bonding with an autoclave method. As the number of surface steps increased, the shear stress and elongation increased. The surface bonding strength increased because of the effect of the mechanical and chemical bonding. When the number of effective stages was exceeded, the shear strength decreased again due to the aspect ratio of the step and the reduction of the penetration effect of the resin into the groove.