• Title/Summary/Keyword: Premixed flame

Search Result 681, Processing Time 0.026 seconds

Flame Structure of a Liftoff Non-Premixed Turbulent Hydrogen Jet with Coaxial Air (부상된 수소 난류확산화염의 화염구조)

  • Oh, Jeong-Seog;Yoon, Young-Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.9
    • /
    • pp.699-708
    • /
    • 2009
  • To understand hydrogen jet liftoff height, the stabilization mechanism of turbulent lifted jet flames under non-premixed conditions was studied. The objectives were to determine flame stability mechanisms, to analyze coexistence of two different flame structure, and to characterize the lifted jet at the flame stabilization point. Hydrogen flow velocity varied from 100 to 300 m/s. Coaxial air velocity was changed from 12 to 20 m/s. Simultaneous velocity field and reaction zone measurements used, PIV/OH PLIF techniques with Nd:YAG lasers and CCD/ICCD cameras. Liftoff height decreased with the increase of fuel velocity. The flame stabilized in a lower velocity region next to the faster fuel jet due to the mixing effects of the coaxial air flow. The flame stabilization was related to turbulent intensity and strain rate assuming that combustion occurs where local flow velocity and turbulent flame propagation velocity are balanced. At the flame base, two different flame structures were found that was the partial premixed flames and premixed flame.

On the extinction of partially premixed diffusion system and the near- stoichiometric structure of premixed flames (부분 예혼합-확산계의 소화특성 및 예혼합 화염의 Near-Stoichiometry 구조에 관한 연구)

  • 김종수;정석호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.1
    • /
    • pp.72-80
    • /
    • 1988
  • Partially premixed diffusion system is analyzed using the matched asymptotic expansion technique adopting counterflow with supplying fuel and oxidizer from one side and fuel only from the other as a model problem. Results show that single-stage extinction always occurs as stretch increases, and the partially premixed diffusion flame can hardly exist. Depending on the initial mixture concentrations, either premixed or diffusion flame extinction leads to complete extinction of the system, and the diffusion flame can change its character to premixed flame such that two premixed flames can exist in the partially premixed-diffusion system.

Combustion Characteristics of Cylindrical Premixed Burner using Different Baffle Plate and Flame Holes (분포판 및 염공변화에 따른 원통형 예혼합 버너의 연소 특성)

  • Lee, Pil Hyong;Hwang, Sang Soon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.7
    • /
    • pp.350-359
    • /
    • 2017
  • Premixed burner is a very strong candidate in household condensing gas boiler burner system because it has low CO and NOx emission with high thermal efficiency. The objective of this study was to determine combustion characteristics of cylindrical premixed burner using different baffle plate and flame holes. Results showed that cylindrical premixed flame mode could be changed into lift-off flame, blue flame, red flame, and green flame with increasing equivalence ratio. In particular, blue flame was found to be very stable at heating load of 8,82~35,280 kcal/h. NOx emission was under 26 ppm between 0.775 to 0.813 of equivalence ratio. CO emission was under 58 ppm under the same equivalence ratio. Thermal efficiency, a very important index in condensing gas boiler, was found to be above 90.13% under the same equivalence region.

Effects of Premixed Flame on Turbulence Properties in a Pilot Flame Stabilized Jet Burner (파일럿 안정화 제트버너의 예혼합 화염이 미연가스 영역 난류특성에 미치는 영향)

  • Lee, Dae Hoon;Kwon, Sejin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.9
    • /
    • pp.1172-1177
    • /
    • 1999
  • Comparisons of measured turbulence properties in the unburned gas region of turbulent premixed flame stabilized by pilot flame, in cases of combusting and non-combusting flow conditions, are presented. Methane-air premixed jet at fuel equivalence ratio of 0.6 and 1.0 and Reynolds number of 7,000 was diagnosed using two-color laser velocimeter to obtain turbulence statistics. Same set of measurements was repeated at 21 locations within the unburned gas region of both combusting and non-combusting conditions. Velocity data were analyzed to evaluate the spatial distribution of turbulence properties including Reynolds stress, probability densities, joint probability densities and auto correlations. Contrary to assumptions of current theoretical models, significant influence of flame was observed in every property that was studied in the present investigation. The effective viscosity increased ten-fold when flame was on from cold flow values. The effect of mixing on joint probability as well as in turbulence intensity was suppressed by the flame. The measurements suggest that common assumptions of premixed flame model may result in sizable error in prediction of flame length and temperature distribution in near-field.

Flame Transfer Function Modeling in a Gas Turbine Partially-premixed Combustor with Equivalence Ratio Modulation (가스터빈 부분 예혼합 연소기에서 당량비 섭동에 대한 화염전달함수 모델링)

  • Kim, Jihwan;Kim, Daesik
    • Journal of ILASS-Korea
    • /
    • v.22 no.2
    • /
    • pp.55-61
    • /
    • 2017
  • This study has investigated the relationship between heat release fluctuations and the flow perturbations in a partially premixed gas turbine combustor using a commercial CFD code. Special focus of the current work is placed on the effect of equivalence ratio on the flame dynamics in a partially-premixed system. As the first step for this combustion dynamics study in the non-perfectly premixed combustor, flame behaviors are modeled and then compared with measured results under both steady and unsteady conditions. The calculated results of the flame transfer function with equivalence ratio fluctuation are found to well capture the main qualitative characteristics of the combustion dynamics for the partially-premixed flames.

Combustion of Low Concentration VOC on a Turbulent Partially Premixed Flame (난류 부분예혼합 화염을 이용한 난연성 유증기 처리에 관한 연구)

  • Ahn, Taekook;Park, Sunho;Nam, Younwoo;Lee, Wonnam
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.207-210
    • /
    • 2014
  • The potential of combustion treatment of low concentration VOC on a turbulent partially premixed flame has been studied experimentally. The significant decrease in hydrocarbon concentration from the low concentration VOC was observed with a turbulent partially premixed flame. The VOC/inert gas mixture whose fuel concentration is beyond the flammability limit could be treated in this method.

  • PDF

NOx Formation Characteristics in Diffusion, Partial Premixed and Premixed Jet flame (가스 연료의 연소 방식에 따른 NOx 생성 특성)

  • Choi, Young-Ho;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.155-164
    • /
    • 1998
  • Numerical analysis was performed with multicomponent transport properties and detailed reaction mechanisms for axisymetric 2-D CH4 jet diffusion, partial premixed, premixed flame. Calculations were carried out twice with C2-Full Mechanism including prompt NO reaction in addition to the above C2-Thermal NO Mechanism. The role of thermal NO mechanism and prompt NO mechanism on each flame's NO production is investigated by using the numerical result. The NOx production of each flame were evaluated Quantitatively in terms of the NOx emission index

  • PDF

Experimental Performance Evaluation of Optical Receiving Probe (광학식 수광 프로브의 실험적 성능평가)

  • Yang, Young-Joon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.3
    • /
    • pp.265-271
    • /
    • 2004
  • A light collecting probe named Multi-colored Integrated Receiving Optics (MICRO) is experimentally examined to verify its performance. For these purposes, the time-series signals of MICRO probe is compared with those of electro-static probe and light-guided probe by monitoring, for example. such as OH radical chemiluminescence. CH radical band and droplet Mie scattering In addition, the experiment was conducted by using laminar premixed Bunsen flame, turbulent premixed Bunsen flame and premixed spray flame, respectively. It was confirmed that the performance of MICRO probe was very useful and convenient to obtain the chemiluminescence signals from local regions in turbulent premixed Bunsen flame and premixed spray flame.

  • PDF

Application of Optical Receiving Probe in Combustion Field (연소장에서의 광학식 수광프로브의 적용)

  • Yang, Young-Joon
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.335-341
    • /
    • 2004
  • A light collecting probe named Multi-colored Integrated Receiving Optics (MICRO) is experimentally examined to verify its performance. For these purposes, the time-series signals of MICRO probe is compared with those of electrostatic probe and light-guided probe by monitoring, for example, such as OH radical chemiluminescence, CH radical band and droplet Mie scattering. In addition, the experiment was conducted by using laminar premixed Bunsen flame, turbulent premixed Bunsen flame and premixed spray flame, respectively. It was confirmed that the performance of MICRO probe was very useful and convenient to obtain the chemiluminescence signals from local regions in turbulent premixed Bunsen flame and premixed spray flame.

Nozzle configurations for partially premixed interacting jet flame to enhance blowout limits (다수 부분 예혼합 화염의 화염날림 유속 확대)

  • Lee, Byeong-Jun;Kim, Jin-Hyun
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.79-84
    • /
    • 2004
  • For the non-premixed interacting jet flames, it has been reported that if eight small nozzles are arranged along the circle of 40 $^{\sim}$ 72 times the diameter of single jet, the flames are not extinguished over 2oom/s. In this research, experiments were extended to the partially premixed cases to reduce both flame temperature and NOx emission. Nine nozzles were used- eight was evenly located along the perimeter of the imaginary circle and one at the geometric centre. The space between nozzles, S, the equivalence ratio, ${\Phi}$, the exit velocity and the role of the jet from the centre nozzle were considered. Normally, flame was lifted and flame base was located inside the imaginary circle made by the nozzle. As nozzles went away from each other, blowout velocity increased and then decreased. The maximum blowout velocity diminished with the addition of air to the fuel stream. When the fuel and/or oxidizer were not fed through the centre nozzle, the maximum blowout velocity obtained by varying Sand ${\Phi}$ was around 160m/s. Optimum nozzle separation distance at which peak blowout velocity obtained also decreased with ${\Phi}$ decrease. Flame base became leaner as approaching to the blowout. It seemed that lots of air was supplied to the flame stabilizing region by the entrainment and partially premixing. To approve this idea and to enhance the blowout velocity, fuel was supplied to the centre region. With the small amount of fuel through the centre nozzle, partially premixed flame could be sustained till sonic velocities. It seemed that the stabilizing mechanism in partially premixed interacting flame was different from that of non-premixed case because one was stabilized by the fuel supply through the centre nozzle but the other destabilized.

  • PDF