• Title/Summary/Keyword: Preliminary-Design

Search Result 2,093, Processing Time 0.035 seconds

A Study on the Factors Affecting the Success of Intelligent Public Service: Information System Success Model Perspective (판별시스템 중심의 지능형공공서비스 성공에 영향을 미치는 요인 연구: 정보시스템성공모형을 중심으로)

  • Kim, Jung Yeon;Lee, Kyoung Su;Kwon, Oh Byung
    • The Journal of Information Systems
    • /
    • v.32 no.1
    • /
    • pp.109-146
    • /
    • 2023
  • Purpose With Intelligent public service (IPS), it is possible to automate the quality of civil affairs, provide customized services for citizens, and provide timely public services. However, empirical studies on factors for the successful use of IPS are still insufficient. Hence, the purpose of this study is to empirically analyze the factors that affect the success of IPS with classification function. ISSM (Information System Success Model) is considered as the underlying research model, and how the algorithm quality, data quality, and environmental quality of the discrimination system affect the relationship between utilization intentions is analyzed. Design/methodology/approach In this study, a survey was conducted targeting users using IPS. After giving them a preliminary explanation of the intelligent public service centered on the discrimination system, they briefly experienced two types of IPS currently being used in the public sector. Structural model analysis was conducted using Smart-PLS 4.0 with a total of 415 valid samples. Findings First, it was confirmed that algorithm quality and data quality had a significant positive (+) effect on information quality and system quality. Second, it was confirmed that information quality, system quality, and environmental quality had a positive (+) effect on the use of IPS. Thirdly, it was confirmed that the use of IPS had a positive (+) effect on the net profit for the use of IPS. In addition, the moderating effect of the degree of knowledge on AI, the perceived accuracy of discriminative experience and IPS, and the user was analyzed. The results suggest that ISSM and TOE framework can expand the understanding of the success of IPS.

Distortional Analysis of Multicell Box Girders with a Trapezoidal Cross-Section Using Force-Decomposition Method (하중분해법을 사용한 제형 다실박스거더의 뒤틀림 해석)

  • Kim, Seungjun;Park, Nam Hoi;Kang, Young Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.779-788
    • /
    • 2008
  • In this present study, the three dimensional shell elements analysis method for exact distortional behavior of multicell trapezoidal box girders subjected to an eccentric loading is proposed. In order to perform the independent distortional analysis using shell elements, it is necessary to calculate exact distortional forces. In this study, the force-decomposition equation for applied eccentric load acting on multicell trapezoidal box girder is derived and the equation based on static force equilibrium and superposition theory decompose the eccentric load to the loads cause flexture, torsion and distortion. So by using this force-decomposition equation and shell element analysis, each behavior can be easily analysis independently. This independent analysis method is very useful to physically understand each major behavior of multicell box girder, especially distortional phenomenon. Furthermore, it may be also very useful for designer to perform the independent distortional analysis for diaphragm design using simple 3D shell elements model without preliminary complex calculation for distortional constants.

The thickness of the soft soil layer and canal-side road failure: A case study in Phra Nakhon Si Ayutthaya province, Thailand

  • Salisa Chaiyaput;Taweephong Suksawat;Lindung Zalbuin Mase;Motohiro Sugiyama;Jiratchaya Ayawanna
    • Geomechanics and Engineering
    • /
    • v.35 no.5
    • /
    • pp.511-523
    • /
    • 2023
  • Canal-side roads frequently collapse due to an unexpectedly greater soft-clay thickness with a rapid drawdown situation. This causes annually increased repair and reconstruction costs. This paper aims to explore the effect of soft-clay thickness on the failure in the canal-side road in the case study of Phra Nakhon Si Ayutthaya rural road no. 1043 (AY. 1043). Before the actual construction, a field vane shear test was performed to determine the undrained shear strength and identify the thickness of the soft clay at the AY. 1043 area. After establishing the usability of AY. 1043, the resistivity survey method was used to evaluate the thickness of the soft clay layer at the failure zone. The screw driving sounding test was used to evaluate the undrained shear strength for the road structure with a medium-stiff clay layer at the failure zone for applying to the numerical model. This model was simulated to confirm the effect of soft-clay thickness on the failure of the canal-side road. The monitoring and testing results showed the tendency of rapid drawdown failure when the canal-side road was located on > 9 m thick of soft clay with a sensitivity > 4.5. The result indicates that the combination of resistivity survey and field vane shear test can be successfully used to inspect the soft-clay thickness and sensitivity before construction. The preliminary design for preventing failure or improving the stability of the canal-side road should be considered before construction under the critical thickness and sensitivity values of the soft clay.

The Effects of Simulation Based Practical Education on Nursing Students' Self-efficacy, Performance Confidence, and Educational Satisfaction

  • Inok Kim
    • Physical Therapy Rehabilitation Science
    • /
    • v.13 no.1
    • /
    • pp.18-25
    • /
    • 2024
  • Objective: This study is a single-group pre-post experimental study to determine the effects of simulation-based practice education on nursing students' self-efficacy, performance confidence, and educational satisfaction. Design: Single-group pre-post experimental studies Methods: This study was conducted from September 1, 2023 to November 30, 2023 for nursing undergraduate students in a simulation based practical education program. The subjects were provided with learning materials about an acute myocardial infarction case with chest pain for preliminary learning. After that, they were divided into teams of 6 people and asked to do self-study for 2 hours per team, twice a week, before conducting simulation practice. For the simulation based practical education, the participants were divided into 9 teams of 6 people each, and each team had 10 minutes for orientation, 15 minutes for scenario operation, and 50 minutes for debriefing. Results: After the simulation based practical education, self-efficacy increased statistically significantly from a mean of 3.51 before training to a mean of 3.80 after training (t=-2.12, p=0.038). However, there was no significant difference in performance confidence. There was a significant positive correlation between self-efficacy and performance confidence (r=0.62, p<0.001) and training satisfaction (r=0.67, p<0.001) after the simulation based practical education. Self-confidence was also significantly correlated with educational satisfaction (r=0.76, p<0.001). Conclusions: The results of this study showed that utilizing simulation-based practical education can increase nursing students' self-efficacy, which positively affects their performance confidence and educational satisfaction. Therefore, simulation-based practical education is an effective nursing education method that can improve nursing students' practical skills.

An analytical algorithm for assessing dynamic characteristics of a triple-tower double-cable suspension bridge

  • Wen-ming Zhang;Yu-peng Chen;Shi-han Wang;Xiao-fan Lu
    • Structural Engineering and Mechanics
    • /
    • v.90 no.4
    • /
    • pp.325-343
    • /
    • 2024
  • Triple-tower double-cable suspension bridges have increased confinement stiffness imposed by the main cable on the middle tower, which has bright application prospects. However, vertical bending and torsional vibrations of the double-cable and the girder are coupled in such bridges due to the hangers. In particular, the bending vibration of the towers in the longitudinal direction and torsional vibrations about the vertical axis influence the vertical bending and torsional vibrations of the stiffening girders, respectively. The conventional analytical algorithm for assessing the dynamic features of the suspension bridge is not directly applicable to this type of bridge. This study attempts to mitigate this problem by introducing an analytical algorithm for solving the triple-tower double-cable suspension bridge's natural frequencies and mode shapes. D'Alembert's principle is employed to construct the differential equations of the vertical bending and torsional vibrations of the stiffening girder continuum in each span. Vibrations of stiffening girders in each span are interrelated via the vibrations of the main cables and the bridge towers. On this basis, the natural frequencies and mode shapes are derived by separating variables. The proposed algorithm is then applied to an engineering example. The natural frequencies and mode shapes of vertical bending and torsional vibrations derived by the analytical algorithm agreed well with calculations via the finite element method. The fundamental frequency of vertical bending and first- and second-order torsion frequencies of double-cable suspension bridges are much higher than those of single-cable suspension bridges. The analytical algorithm has high computational efficiency and calculation accuracy, which can provide a reference for selecting appropriate structural parameters to meet the requirements of dynamics during the preliminary design.

Effect of Tablet-based Cognitive Intervention on Cognition in Patients With Mild Cognitive Impairment: A Pilot Study

  • Ji Young Park;Seon Ae Choi;Jae Joon Kim;Yu Jeong Park;Chi Kyung Kim;Geum Joon Cho;Seong-Beom Koh;Sung Hoon Kang
    • Dementia and Neurocognitive Disorders
    • /
    • v.22 no.4
    • /
    • pp.130-138
    • /
    • 2023
  • Background and Purpose: Growing evidence has shown that cognitive interventions can mitigate cognitive decline in patients with mild cognitive impairment (MCI). However, most previous cognitive interventions have been group-based programs. Due to their intrinsic limitations, group-based programs are not widely used in clinical practice. Therefore, we have developed a tablet-based cognitive intervention program. This preliminary study investigated the feasibility and effects of a 12-week structured tablet-based program on cognitive function in patients with MCI. Methods: We performed a single-arm study on 24 patients with MCI. The participants underwent a tablet-based cognitive intervention program 5 times a week over a 12-week period. The primary outcome was changes in cognitive function, measured using the Korean version of the Consortium to Establish a Registry for Alzheimer's Disease Assessment Packet (CERAD-K). Outcomes were evaluated at baseline, within two weeks of the last program (post-intervention), and at the six-month follow-up session. Results: The completion rate of the tablet-based program was 83.3% in patients with MCI. The program improved cognitive function based on the CERAD-K total score (p=0.026), which was maintained for at least three months (p=0.004). There was also an improvement in the depression scale score (p=0.002), which persisted for three months (p=0.027). Conclusions: Our 12-week structured tablet-based program is feasible for patients with MCI. Furthermore, although further studies with a double-arm design are required, the program appears to be an effective strategy to prevent cognitive decline in patients with MCI.

Analysis of Electric Field Distribution of PVDF Electrospinning According to Electrospinning Conditions (전기방사 조건에 따른 PVDF 방사의 전기장 분포 해석)

  • Yonjo Jung;Minsang Lee;Honggun Kim
    • Journal of The Korean Institute of Defense Technology
    • /
    • v.5 no.4
    • /
    • pp.9-15
    • /
    • 2023
  • In this study, electric field analysis was conducted for each process as a preliminary step in the design of the electrospinning device to apply the electrospinning PVDF nanofibers to increase the filtering effect of insect screens. In the electrospinning analysis using a single nozzle, it was confirmed that there was a decrease in the electrostatic field strength as the tip's size decreased, an increase in the voltage, and no effect depending on the TCD distance. In addition, it was confirmed that the closer the distance between tips, the more electric field interference occurs, and this was found to have a more significant effect on the tip located in the center with tips on both sides. Therefore, based on these analytical results, it is believed that an increase in production speed can be expected by establishing an efficient process line by confirming the radiating area of the collector and designing the spacing between multi-nozzles through actual experiments.

  • PDF

Development of Practical Problem-Based Home Economics Teaching.Learning Process Plans by Blended Learning Strategy - Focusing on a Unit 'the Youth and Consumer Life' - (Blended Learning(BL) 전략을 활용한 실천적 문제 중심 가정과 교수 학습 과정안 개발 - '청소년과 소비생활' 단원을 중심으로 -)

  • Lee, Jin-Hee;Chae, Jung-Hyun
    • Journal of Korean Home Economics Education Association
    • /
    • v.20 no.4
    • /
    • pp.19-42
    • /
    • 2008
  • The purpose of this study was to develop practical problem-based home economics teaching.learning process plans about a unit 'the youth and consumer life' of middle school eighth-grade Technology and Home Economics by applying blended learning(BL) strategy. According to ADDIE instructional design model, this study was conducted in the following procedure: analysis, design/development, implementation, and evaluation. In the stage of design and development, the selected unit was converted into a practical problem-based unit, and practical problem-based teaching. learning process plans were designed in detail by using BL strategy. An online study room for practical problem-based home economics instruction grounded in BL strategy was prepared by using Edunet(http://community.edunet4u.net/${\sim}$consumer2). Eight-session lesson plans were mapped out, and study aids for students and materials for teachers were prepared. In the implementation stage, the first-session teaching plans that dealt with a minor question 'what preparations should be made to become a wise consumer' were utilized when instruction was provided to 115 eighth graders who were in three different province, and the other one was in a middle school in the city of Daejeon. The experimental teaching was implemented for two weeks in the following procedure: preliminary program, pre-online learning, main instruction and post- online learning. The preliminary program was carried out in a session in the classroom, and pre-online learning was provided before the main instruction was given in a session in the classroom. After the main instruction was completed, post-online learning was offered. In the evaluation stage, a survey was conducted on all the learners and teachers to find out their opinions and suggestions.

  • PDF

An Evaluation for Structural Performance of Suspension Bridge by using the Natural Frequency of Hanger Member (행거의 고유진동수를 이용한 현수교의 구조적 성능 평가)

  • Wu, Sang Ik;Kim, Kyoung Nam;Lee, Seong Haeng;Jung, Kyoung Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.285-293
    • /
    • 2004
  • As a special infrastructure, it is important that the suspension bridges which were designed by using the cable are carefully maintained and safely inspected after their construction, more than what is done in other cases of bridge structures. However, the structural analysis for their design and maintenance has considered only the simplified geometric shape of the structure. Particularly, it is not easy to make the modeling analyze the bridge structure including detailed steel deck plates. In this paper, we evaluated the structural behaviors and performances of the completed earth-anchored suspension bridge that was in a completed state through both the tension of hanger member and their computational analysis. We considered the frame system and the detailed steel deck plates that were especially added into the modeling to take more precision analysis about it. We also applied hanger tensions converted by the natural frequency and the natural frequency of the bridge when in normal vibration. Results of the vehicle loading test were used in the analysis. We compared the results by using our modeling with the result of the loading test and the hanger tension. Our prediction on the behavior of the structure emulates the behavior of the real structure. In applying the data measured by the typhoon "Maemi" which arrived in-land last year, we confirmed our analysis model for the possibility of applying effectively into the preliminary design and maintenance plan.

Risk Assessment for a Steel Arch Bridge System Based upon Response Surface Method Compared with System Reliability (체계신뢰성 평가와 비교한 응답면기법에 의한 강재아치교의 위험성평가)

  • Cho, Tae-Jun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.273-279
    • /
    • 2007
  • Probabilistic Risk Assessment considering statistically random variables is performed for the preliminary design of an Arch Bridge. Component reliabilities of girders have been evaluated using the response surfaces of the design variables at the selected critical sections based on the maximum shear and negative moment locations. Response Surface Method (RSM) is successfully applied for reliability analyses lot this relatively small probability of failure of the complex structure, which is hard to be calculated by Monte-Carlo Simulations or by First Order Second Moment method that can not easily calculate the derivative terms in implicit limit state functions. For the analysis of system reliability, parallel resistance system composed of girders is modeled as a parallel series connection system. The upper and lower probabilities of failure for the structural system have been evaluated and compared with the suggested prediction method for the combination of failure modes. The suggested prediction method for the combination of failure modes reveals the unexpected combinations of element failures in significantly reduced time and efforts, compared with the previous permutation method or conventional system reliability analysis method.