• Title/Summary/Keyword: Preliminary design assessment

Search Result 122, Processing Time 0.026 seconds

Classification of Architectural Design Elements for the Risk Assessment of Bomb Attack of Multi-Use Buildings (다중이용시설의 폭발물 테러위험도 평가를 위한 건축계획요소 체계화 연구)

  • Kang, Kyung-Yeon;Park, So-Yeon;Heo, Hong;Lee, Kyung-Hoon
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.7
    • /
    • pp.47-57
    • /
    • 2018
  • As a preliminary step for developing vulnerability assessment model of terrorism, this study aims to deduce and classify architectural design elements of multi-use buildings to protect them from terrorism using explosives. For these objectives, eleven domestic and foreign guidelines of anti-terrorism, including RVS which is one of the commonly used tools for assessing vulnerability to terrorism, were analyzed. As results, 2 scenarios of explosive attack, 4 layers of defense, and 58 architectural design elements for risk assessment of terrorism were deduced. And the design elements were categorized into 18 groups based on their purpose and function to take into account the supplementary effects among them. Then, the design measures applicable for each element were classified into several grades on the basis of its protection or risk level. Lastly, 11 multi-use buildings were selected and investigated how the elements suggested in this study were applied to them.

Preliminary Hazard Analysis of Vehicle with G-SAVE Technology (G-SAVE 공법 탑재 차량의 예비위험성평가)

  • Ui Pil Chong;Hyun Chul Park;Young Soo Park;Byung Chul Ahn;Deok Soo Han;Hyeon Jun Jeon
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.4
    • /
    • pp.283-287
    • /
    • 2023
  • The structures for road safety are guard rails that protect the cars and passengers. If an accident occurs on the roads after a long period of installation, it may escalate into a major disaster. In order to repair many guard rails, the existing repair method of replacing them with new ones requires enormous financial resources. To solve this problem, the G-SAVE method was developed to repair the guard rail without replacing them. This method removes the rust on the surface of the guard rail and then performs ambient-dip galvanizing coating on it without replacing the new ones. No studies or reports have yet been made on the risk assessment of harmful substances, vehicles for these entire processes. Therefore, this paper focuses on risk assessment using the PHA (Preliminary Hazard Analysis) technique and conducts risk assessment for concept design stage of the coating vehicles.

Preliminary design and inelastic assessment of earthquake-resistant structural systems

  • Rubinstein, Marcelo;Moller, Oscar;Giuliano, Alejandro
    • Structural Engineering and Mechanics
    • /
    • v.26 no.3
    • /
    • pp.297-313
    • /
    • 2007
  • A preliminary performance-based seismic design methodology is proposed. The top yield displacement of the system is computed from these of the components, which are assumed constant. Besides, a simple procedure to evaluate the top yield displacement of frames is developed. Seismic demands are represented in the form of yield point spectra. The methodology is general, conceptually transparent, uses simple calculations based on first principles and is applicable to asymmetric systems. To consider a specific situation two earthquake levels, occasional and rare are considered. The advantage of an arbitrary assignment of strength to the different components to reduce eccentricities and improved the torsional response of the system is addressed. The methodology is applied to an asymmetric five story building, and the results are verified by push-over analysis and non linear dynamic analysis.

Preliminary Hazard Analysis: Assessment of New Component Interface Module Design for APR1400

  • Olaide, Adebena Oluwasegun;Jung, Jae Cheon;Choi, Moon Jae;Ngbede, Utah Michael
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.17 no.1
    • /
    • pp.21-34
    • /
    • 2021
  • The use of Field-Programmable Gate Arrays (FPGAs) in the development of safety-related Human-Machine Interface (HMI) systems has gained much momentum in nuclear applications. Recently, one of the application areas for the Advanced Power Reactor 1400 (APR1400) is in the development of the advanced Component Interface Module (CIM) of the Engineered Safety Features Actuation System (ESFAS). Using systems engineering approach, we have developed a new FPGA-based advanced CIM software. The first step of our software development process involves the Preliminary Hazard Analysis (PHA) based on the previous CIM design. In this paper, we describe the qualitative approach used in performing the preliminary hazard analysis. The paper presents the methodology for applying a modified Hazard and Operability (HAZOP) procedure for the conduct of PHA which resulted in a qualitative risk-ranking scheme that informed the decisions for the safety criteria in the requirements specification phase. The qualitative approach provided the justification for design changes during the advanced CIM software development process.

Development and Implementation of Design Tool for Course-Embedded Assessment in the Engineering Education Accreditation (공학교육인증에서 교과기반평가를 위한 설계도구 개발 및 적용)

  • Kim, Young-tak;Kim, Chang-hak;Chung, Jae-woo
    • Journal of Engineering Education Research
    • /
    • v.19 no.2
    • /
    • pp.70-75
    • /
    • 2016
  • This paper deals with a result of case study for the development of CEA(Course-Embedded Assessment) design tool for engineering education accreditation implementing programs. Many programs have been devoting efforts to apply CEA to their engineering education. In order to effectively apply the CEA to educational program, it is required to develop the standardized form or scheme for CEA application. As a preliminary approach, we propose the design tool and the result of a case study for CEA application in engineering education.

Development of Quantitative Ergonomic Assessment Method for Helicopter Cockpit Design in a Digital Environment (가상 환경 상의 헬리콥터 조종실 설계를 위한 정량적인 인간공학적 평가 방법 개발)

  • Jung, Ki-Hyo;Park, Jang-Woon;Lee, Won-Sup;Kang, Byung-Gil;Uem, Joo-Ho;Park, Seik-Won;You, Hee-Cheon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.2
    • /
    • pp.203-210
    • /
    • 2010
  • For the development of a better product which fits to the target user population, physical workloads such as reach and visibility are evaluated using digital human simulation in the early stage of product development; however, ergonomic workload assessment mainly relies on visual observation of reach envelopes and view cones generated in a 3D graphic environment. The present study developed a quantitative assessment method of physical workload in a digital environment and applied to the evaluation of a Korean utility helicopter (KUH) cockpit design. The proposed assessment method quantified physical workloads for the target user population by applying a 3-step process and identified design features requiring improvement based on the quantified workload evaluation. The scores of physical workloads were quantified in terms of posture, reach, visibility, and clearance, and 5-point scales were defined for the evaluation measures by referring to existing studies. The postures of digital humanoids for a given task were estimated to have the minimal score of postural workload by finding all feasible postures that satisfy task constraints such as a contact between the tip of the index finger and a target point. The proposed assessment method was applied to evaluate the KUH cockpit design in the preliminary design stage and identified design features requiring improvement. The proposed assessment method can be utilized to ergonomic evaluation of product designs using digital human simulation.

A Study on the Safety Requirements Establishment through System Safety Processes (시스템 안전성평가를 통한 효율적 요건 도출방안 연구)

  • Yoo, Seung-woo;Jung, Jinpyong;Yi, Baeck-Jun
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.2
    • /
    • pp.29-34
    • /
    • 2013
  • Safety requirements for aircraft and system functions include minimum performance constraints for both availability and integrity of the function. These safety requirements should be determined by conducting a safety assessment. The depths and contents of aircraft system safety assessment vary depending on factors such as the complexity of the system, how critical the system is to flight safety, what volume of experience is available on the type of system and the novelty and complexity of the technologies being used. Requirements that are defined to prevent failure conditions or to provide safety related functions should be uniquely identified and traceable through the levels of development. This will ensure visibility of the safety requirements at the software and electronic hardware design level. This paper has prepared to study on promoting the efficiency of establishing hierarchical safety requirements from aircraft level function to item level through system safety processes.

Preliminary hydrodynamic assessments of a new hybrid wind wave energy conversion concept

  • Allan C de Oliveira
    • Ocean Systems Engineering
    • /
    • v.13 no.1
    • /
    • pp.21-41
    • /
    • 2023
  • Decarbonization and energy transition can be considered as a main concern even for the oil industry. One of the initiatives to reduce emissions under studies considers the use of renewable energy as a complimentary supply of electric energy of the production platforms. Wind energy has a higher TRL (Technology Readiness Level) than other types of energy converters and has been considered in these studies. However, other types of renewable energy have potential to be used and hybrid concepts considering wind platforms can help to push the technological development of other types of energy converters and improve their efficiency. In this article, a preliminary hydrodynamic assessment of a new concept of hybrid wind and wave energy conversion platform was performed, in order to evaluate the potential of wave power extraction. A multiple OWCs (Oscillating Water Column) WEC (Wave Energy Converter) design was adopted for the analysis and some simplifications were adopted to permit using a frequency domain approach to evaluate the mean wave power estimation for the location. Other strategies were used in the OWC design to create resonance in the sea energy range to try to maximize the potential power to be extracted, with good results.

Development and Validation of Core Competency Assessment Tools for Engineering Student (공학계열 학생 핵심역량 진단도구 개발 및 타당화 연구)

  • Kim, Younyoung;Yoon, Jiyoung
    • Journal of Engineering Education Research
    • /
    • v.24 no.4
    • /
    • pp.3-20
    • /
    • 2021
  • As we have become more interested in 'competency' that means ability to do something around the world, the competency of the best performers has also been introduced in the university curriculum as a concept of core competency. Research continues on why this competency-based education is needed compared to existing academic-oriented education, how it can be introduced into existing curricula, and how it can be developed and evaluated in detail. This study develops and validates core competency assessment tools that can diagnose core competencies of engineering students. Therefore, this research paper conducted a literature review related to core competencies and also core competency assessment tools of university students. It seeks to explore the implications of core competency assessment tools for engineering students and then lay the foundation for competency-based teaching and learning at engineering colleges. And also it defines the concepts of core competencies and each core competency of engineering students through prior research analysis of competence, core competence, and core competence of university students. The primary core competency assessment tool consisted of sub-factors and questions of core competencies. It were modified through the expert validation of the primary one and then it was used as a core competency assessment tools for preliminary investigation. The core competency assessment tools for engineering students are consisted of 6 competencies, 22 sub-factors, and 91 questions. There are core competencies as follows: engineering basic competencies, major engineering competencies, self-management competencies, communication competencies, interpersonal competencies, global competencies. The preliminary survey was conducted on 426 engineering students attending the Engineering Education FESTA 2019. The preliminary findings were derived by conducting exploratory factor analysis, confirmatory factor analysis, question characteristics analysis, and reliability analysis for validation. The core competency assessment tools developed through this study can be used to verify the effectiveness of the curriculum and programs for students at engineering colleges. In addition, the developed core competencies, sub-factors, and questions can be utilized in a series of courses that design, conduct, and evaluate engineering curricula and programs as competency-based curriculum. The significance of this study is to lay the groundwork for providing competency-based education engineering students to develop core competencies.

Introductive Study to the Antarctic Environmental Impact Assessment in Korea (우리나라의 남극 환경영향평가제도 정착을 위한 연구)

  • Choi, Jae-Yong;Choi, Jun-Gyu;Choi, Jun-Young
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.155-163
    • /
    • 2004
  • The Protocol on Environmental Protection to the Antarctic Treaty was ratified in 1991. With the aim to ensure comprehensive protection of the Antarctic environment, it contains provisions on environmental protection and conservation of the Antarctic area, including provisions for Environmental Impact Assessment. Environmental Impact Assessment is a method used to predict environmental impacts at an early stage in project planning and design, and find ways to mitigate or prevent adverse impacts in order to maintain balance between development activities and environmental conservation. Internationally, the Environmental Impact Assessment (EIA) in the Antarctic is classified into three types - preliminary, Initial, and Comprehensive - based on the environmental impacts of the proposed activities. In case of the Preliminary Environmental Review (PER), proposed activity may proceed in accordance to the national procedures and drafting of an outline. However, Initial (IEE) and Comprehensive Environmental Evaluation (CEE) assess and verify the impacts of the proposed activity, and require methods or alternatives for mitigating or eliminating negative impacts on the environment. Although Korea's Act of 'Activities and Environmental Protection in Antarctica' also includes provisions on EIA for activities in Antarctica, there are obvious contrasts with the EIAs currently being conducted in Korea, in regards to deciding the level of EIA through screening and identifying key issues for assessment through scoping. In order to implement the proper EIA, more improved methods for drafting and reviewing the EIA to Antarctica in Korea are necessary.