• 제목/요약/키워드: Preimplantation embryo development

검색결과 141건 처리시간 0.034초

The Effects of Resveratrol on Oocyte Maturation and Preimplantation Embryo Development

  • Kwak, Seong-Sung;Hyun, Sang-Hwan
    • 한국수정란이식학회지
    • /
    • 제27권2호
    • /
    • pp.71-80
    • /
    • 2012
  • Biotechnologies for cloning animals and in vitro embryo production have the potential to produce biomedical models for various researches. Especially, pigs are a suitable model for xenotransplantation, transgenic production and various areas of reproductive research due to its physiological similarities to human. However, utilization of in vitro-produced embryos for transfer remains limited. Despite improvement over past few decades, obstacles associated with the production of good quality embryos in vitro still exist which limit the efficiency of cloning. One of major problems includes improper in vitro maturation (IVM) and culture (IVC). Oxidative stress caused from in vitro culture conditions contributes to inadequate IVM and IVC which leads to poor developmental competence of oocytes, failure of fertilization and embryo development. To reduce the oxidative stress, various antioxidants have been used to IVM and IVC system. However, limited information is available on the effects of resveratrol on livestock reproductions. Resveratrol is a polyphenolic natural product and well known as an antioxidant in foods and beverages (e.g. in grapes and red wine). Resveratrol is known to be cardioprotective, anticarcinogenic, anti-inflammatory, antioxidant and antiapoptotic. This paper will review the effects of resveratrol on in vitro maturation of oocytes and embryo development.

착상 전 돼지 체외수정 배아 발달 단계에서의 세포 자멸사 현상 (Apoptosis Event of Pre-implantation Development Stages in Porcine IVF Embryos)

  • 홍성민;전유별;현상환
    • 한국수정란이식학회지
    • /
    • 제24권3호
    • /
    • pp.183-187
    • /
    • 2009
  • In this study, we aimed to determine whether the evaluated markers of cell death could be found at particular developmental stages of normal porcine in vitro fertilization (IVF) embryos. We investigated the characteristics of spontaneous and induced apoptosis during preimplantation development stages of porcine IVF embryos. In experiment 1, to induce apoptosis of porcine IVF embryos, porcine IVF embryos at 22h post insemination were treated at different concentration of actinomycin D (0, 5, 50 and 500 ng/ml in NCSU medium). Treated embryos were incubated at $39^{\circ}C$ in 5% $CO_2$, 5% $O_2$ for 8h, and then washed to NCSU medium and incubated until blastocyst (BL) stage. We examined cleavage rate at 2days and BL development rate at 7days after in vitro culture. A significantly lower rate of cleavage was found in the 500 ng/ml group compared to others (500 ng/ml vs. 0, 5, 50 ng/ml; 27.8 % vs. 50.0%, 41.2%, 35.9%), and BL formation rate in 500 ng/ml was lower than that of others (500 ng/ml vs. 0, 5, 50 ng/ml; 8.0% vs. 12.6%, 11.2%, 12.6%). In experiment 2, to evaluate apoptotic cells, we conducted TUNEL assay based on morphological assessment of nuclei and on detection of specific DNA degradation under fluorescence microscope. This result showed that apoptosis is a normal event during preimplantation development in control group (0 ng/ml actinomycin D). A high number of BL derived control group contained at least one apoptotic cell. Actinomycin D treated BLs responded to the presence of apoptotic inductor by significant decrease in the average number of blastomeres and increase in the incidence of apoptotic cell death. In 500 ng/ml group, the incidence of apoptosis increased at 4-cell stage and later. This result suggested that apoptosis is a process of normal embryonic development and actinomycin D is useful tool for the apoptosis study of porcine preimplantation embryos.

용해된 Matrigel 첨가 배지에서 착상전 생쥐 배아의 발생 (Development of Mouse Preimplantation Embryos in Solubilized Matrigel Media)

  • 정병목;추형식;강병문;계명찬
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제27권4호
    • /
    • pp.381-385
    • /
    • 2000
  • Objective: To verify the effect of two forms (growth factor and growthfactor-reduced) of solubilized Matrigel on the development in mouse preimplantation embryos. Methods: Late 2-cell stage eggs were cultured through the blastocyst stage in the presence of GF- or GFR-Matrigel (0.5%, v/v). Morphological development, cell number and % apoptotic nuclei of blastocyst were measured by Roecst staining and TUNEL of nuclei. Results: Morphological development, number of cells per embryo was significantly increased in the presence of GF- or GFR-Matrigel. Culture of the embryos in the GF-Matrigel gave the best result. Conclusion: Low concentration of solubilized Matrigel improved development of mouse embryos regardless of growth factor content of the Matrigel. Growth factors and extracellular matrix protein included in the Matrigel synergistically potentiated the development of mouse embryos.

  • PDF

PAF Regulate Blastocyst Development to Hatching Stage through PKC Activity in the Mouse

  • Cheon Yong-Pil
    • Reproductive and Developmental Biology
    • /
    • 제30권2호
    • /
    • pp.75-79
    • /
    • 2006
  • The developmental regulation of the preimplantation mammalian embryos is a fundamental step for preparing the implantation and it may be regulated by several autocrine and paracrine factors including platelet-activating factor. PAF improved the embryonic survival and implantation but its role during blastocyst development is still largely unknown. In this study, the effects and the possible pathway of PAF on developmental regulation of blastocyst to hatching stage were investigated. Developmental pattern in hatching embryo was a concentration-response curve showing maximal activity at 1 nM PAF, with decreasing activity at higher concentrations. $50{\mu}M$ 1-(5-isoquinolimnesulfonyl)-2-methylpiperazinme dihydrochloride (H-7), a PKC inhibitor, inhibited the progression of blastocyst to hatching embryo. In addition H-7 blocked the PAF effects on the blastocyst development. Besides tetradecanoylphorbol acetate (TPA), a PKC activator stimulated development of blastocyst to the hatching stage. These finding revealed that PAF support the blastocyst development to the hatching embryo. Also it is suggested that PAF action pathways in hatching supporting include the PKC signaling pathway.

생쥐 난자와 착상전 초기배아에서 DNA 메틸전이효소 전사물의 발현 (Expression of DNA Methyltransferase Transcripts in The Oocytes and Preimplantation Embryos in Mouse)

  • 김종월;이양한;강승호;한성원;전일경;김성례;김문규
    • 한국발생생물학회지:발생과생식
    • /
    • 제2권2호
    • /
    • pp.197-203
    • /
    • 1998
  • 포유류 배아발생 중 DNA 메틸화는 세포분화와 유전자발현에서 중요한 역할을 하는 것으로 알려져 있다. 그러나, 생쥐 착상전 초기배아 발생 중 메틸화효소에 의해 유지되는 DNA 메틸화의 중요성과 자세한 기작은 잘 이해되고 있지 않다. 이 연구에서 DNA 메틸화의 역할에 관하여 알아보기 위하여, 성숙난자와 착상전 초기배아에서 DNA 메틸전이효소의 발현양상을 조사하였다. 이를 위해, DNA 메틸전이효소를 암호화하고 있는 cDNA에서 primer를 고안하였다. Primer의 정확도와 PCR조건의 적합화를 통하여, DNA MTase 전사물이 성숙난자와 착상전 초기배아에서 검출되었다. DNA MTase의 mRNA량은 성숙난자에서 가장 높으며, 전핵시기까지 비슷한 정도로 유지되었다. 이후 8-세포기까지 지속적으로 감소하다 상실기 배아에서 다시 검출되어 포배기까지 증가하는 양상을 보였다. 그리고, RNA polymerase II 억제제를 전핵시기 배아에 처리하여, 난자와 전핵시기 배아에 다량 존재하는 전사물이 모계유래인 것을 확인하였다. 결국, 난자와 전핵시기 배아에 상대적으로 다량 존재하는 DNA 메틸전이효소의 전사물은 아마도 착상전 초기배아에서 DHA 메틸화의 유지에 필요하며, 착상전 초기배아 발생에 있어서 유전자발현과 세포분화에 영향을 줄 것임을 시사하고 있다.

  • PDF

마우스 성숙난자의 유리화 동결 중 Cytoskeleton Stabilizer, Taxol의 처리 후 배발달률과 산자의 생산 (Post-thawed Preimplantation Development and Production of Offsprings after Vitrification using Taxol $^{TM}$ a Cytoskeleton Stabilizer)

  • 박성은;박이석;정형민
    • 한국수정란이식학회지
    • /
    • 제16권3호
    • /
    • pp.239-243
    • /
    • 2001
  • Selection of oocyte cryopreservation method is a prerequisite factor for developing an effective bank system. Compared with slow freezing method, the vitrification has various advantages such as avoiding intracellular ice crustal formation. In our previous, we attempted to employ a vitrification method using ethylene glycol and an electron microscope grid for cryopreservation of mouse oocytes. However, A high incidence of spindle and chromosome abnormalities was detected in thawed oocytes after vitrification. We examined whether the addition of a cystoskeleton stabilizer Taxol $^{TM}$, to the vitrification solution could promote the post-thawed survival and subsequent development of stored oocytes. More oocytes developed to the 4-cell (44.7% vs. 69.7%), 8-cell (31.8% vs. 64.2%), morula (24.7% vs. 54.3%), and blastocyst (20.3% vs. 49.2%) stages after the addition of Taxol$^{TM}$ to the cryoprotectant than after no addition. 21 and 26 mouse pups were born after transfer of blastocyst derived from oocytes vitrified without and with Taxol. The addition of Taxol to vitrification solution greatly promoted post-thaw preimplantation development of ICR morose oocytes.tes.

  • PDF

p66Shc in sheep preimplantation embryos: Expression and regulation of oxidative stress through the manganese superoxide dismutase-reactive oxygen species metabolic pathway

  • Tong Zhang;Jiaxin Zhang;Ruilan Li
    • Animal Bioscience
    • /
    • 제36권7호
    • /
    • pp.1022-1033
    • /
    • 2023
  • Objective: p66Shc, a 66 kDa protein isoform encoded by the proto-oncogene SHC, is an essential intracellular redox homeostasis regulatory enzyme that is involved in the regulation of cellular oxidative stress, apoptosis induction and the occurrence of multiple age-related diseases. This study investigated the expression profile and functional characteristics of p66Shc during preimplantation embryo development in sheep. Methods: The expression pattern of p66Shc during preimplantation embryo development in sheep at the mRNA and protein levels were studied by quantitative real-time polymerase chain reaction (RT-qPCR) and immunofluorescence staining. The effect of p66Shc knockdown on the developmental potential were evaluated by cleavage rate, morula rate and blastocyst rate. The effect of p66Shc deficiency on reactive oxygen species (ROS) production, DNA oxidative damage and the expression of antioxidant enzymes (e.g., catalase and manganese superoxide dismutase [MnSOD]) were also investigated by immunofluorescence staining. Results: Our results showed that p66Shc mRNA and protein were expressed in all stages of sheep early embryos and that p66Shc mRNA was significantly downregulated in the 4-to 8-cell stage (p<0.05) and significantly upregulated in the morula and blastocyst stages after embryonic genome activation (EGA) (p<0.05). Immunofluorescence staining showed that the p66Shc protein was mainly located in the peripheral region of the blastomere cytoplasm at different stages of preimplantation embryonic development. Notably, serine (Ser36)-phosphorylated p66Shc localized only in the cytoplasm during the 2- to 8-cell stage prior to EGA, while phosphorylated (Ser36) p66Shc localized not only in the cytoplasm but also predominantly in the nucleus after EGA. RNAi-mediated silencing of p66Shc via microinjection of p66Shc siRNA into sheep zygotes resulted in significant decreases in p66Shc mRNA and protein levels (p<0.05). Knockdown of p66Shc resulted in significant declines in the levels of intracellular ROS (p<0.05) and the DNA damage marker 8-hydroxy2'-deoxyguanosine (p<0.05), markedly increased MnSOD levels (p<0.05) and resulted in a tendency to develop to the morula stage. Conclusion: These results indicate that p66Shc is involved in the metabolic regulation of ROS production and DNA oxidative damage during sheep early embryonic development.

Enhancement of preimplantation mouse embryo development with optimized in vitro culture dish via stabilization of medium osmolarity

  • Hyejin Yoon;Jongwoo Lee;Inyoung Kang;Kyoo Wan Choi;Jaewang Lee;Jin Hyun Jun
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제50권4호
    • /
    • pp.244-252
    • /
    • 2023
  • Objective: We evaluated the efficacy of the newly developed optimized in vitro culture (OIVC) dish for cultivating preimplantation mouse embryos. This dish minimizes the need for mineral oil and incorporates microwells, providing a stable culture environment and enabling independent monitoring of individual embryos. Methods: Mouse pronuclear (PN) zygotes and two-cell-stage embryos were collected at 18 and 46 hours after human chorionic gonadotropin injection, respectively. These were cultured for 120 hours using potassium simplex optimized medium (KSOM) to reach the blastocyst stage. The embryos were randomly allocated into three groups, each cultured in one of three dishes: a 60-mm culture dish, a microdrop dish, and an OIVC dish that we developed. Results: The OIVC dish effectively maintained the osmolarity of the KSOM culture medium over a 5-day period using only 2 mL of mineral oil. This contrasts with the significant osmolarity increase observed in the 60-mm culture dish. Additionally, the OIVC dish exhibited higher blastulation rates from two-cell embryos (100%) relative to the other dish types. Moreover, blastocysts derived from both PN zygotes and two-cell embryos in the OIVC dish group demonstrated significantly elevated mean cell numbers. Conclusion: Use of the OIVC dish markedly increased the number of cells in blastocysts derived from the in vitro culture of preimplantation mouse embryos. The capacity of this dish to maintain medium osmolarity with minimal mineral oil usage represents a breakthrough that may advance embryo culture techniques for various mammals, including human in vitro fertilization and embryo transfer programs.

Alteration of DNA Methylation in Oct-4 Gene in Mouse Preimplantation Embryos by the Interference RNA

  • Kim, Jong-Mu;Ko, Yeoung-Gyu;Seong, Hwan-Hoo;Chung, Hak-Jae;Chang, Won-Kyong;Kim, Nam-Hyung
    • Reproductive and Developmental Biology
    • /
    • 제31권1호
    • /
    • pp.21-28
    • /
    • 2007
  • During early embryo development, Oct-4 is an important transcription factor for the early differentiation the present study was first examined methylation status in distal enhancer and promoter region of Oct-4 during mouse pre-implantation embryo development. In oocyte and sperm, high methylation was observed in both distal and proximal of promoter in Oct-4. Following fertilization relatively high methylation level remained until 8-cell stage embryos, but decreased at the morula and blastocyst stage. Specific gene knock down of Oct-4 by siRNA injection into zygote induced higher methylation rates of both distal and proximal region of promoter of Oct-4. These results suggest a functional link between the DNA methylation status of distal and promoter resign in the Oct-4 gene and the gene sequence-specific transcriptional silencing by exogenous siRNA injection during mouse preimplantation embryos.

Mitochondria in reproduction

  • Min-Hee Kang;Yu Jin Kim;Jae Ho Lee
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제50권1호
    • /
    • pp.1-11
    • /
    • 2023
  • In reproduction, mitochondria produce bioenergy, help to synthesize biomolecules, and support the ovaries, oogenesis, and preimplantation embryos, thereby facilitating healthy live births. However, the regulatory mechanism of mitochondria in oocytes and embryos during oogenesis and embryo development has not been clearly elucidated. The functional activity of mitochondria is crucial for determining the quality of oocytes and embryos; therefore, the underlying mechanism must be better understood. In this review, we summarize the specific role of mitochondria in reproduction in oocytes and embryos. We also briefly discuss the recovery of mitochondrial function in gametes and zygotes. First, we introduce the general characteristics of mitochondria in cells, including their roles in adenosine triphosphate and reactive oxygen species production, calcium homeostasis, and programmed cell death. Second, we present the unique characteristics of mitochondria in female reproduction, covering the bottleneck theory, mitochondrial shape, and mitochondrial metabolic pathways during oogenesis and preimplantation embryo development. Mitochondrial dysfunction is associated with ovarian aging, a diminished ovarian reserve, a poor ovarian response, and several reproduction problems in gametes and zygotes, such as aneuploidy and genetic disorders. Finally, we briefly describe which factors are involved in mitochondrial dysfunction and how mitochondrial function can be recovered in reproduction. We hope to provide a new viewpoint regarding factors that can overcome mitochondrial dysfunction in the field of reproductive medicine.