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PAF Regulate Blastocyst Development to Hatching Stage through PKC Activity
in the Mouse

Yong-Pil Cheon'
Department of Biology, College of Natural Sciences, Sungshin Women's University, Seoul 136-742, Korea

ABSTRACT

The developmental regulation of the preimplantation mammalian embryos is a fundamental step for preparing the
implantation and it may be regulated by several autocrine and paracrine factors including platelet-activating factor.
PAF improved the embryonic survival and implantation but its role during blastocyst development is still largely
unknown. In this study, the effects and the possible pathway of PAF on developmental regulation of blastocyst to
hatching stage were investigated. Developmental pattern in hatching embryo was a concentration-response curve
showing maximal activity at 1 nM PAF, with decreasing activity at higher concentrations. 50 UM 1-(5-isoquinolimne-
sulfonyl)-2-methylpiperazinme dihydrochloride (H-7), a PKC inhibitor, inhibited the progression of blastocyst to
hatching embryo. In addition H-7 blocked the PAF effects on the blastocyst development. Besides tetradecanoylphorbol
acetate (TPA), a PKC activator stimulated development of blastocyst to the hatching stage. These finding revealed that
PAF support the blastocyst development to the hatching embryo. Also it is suggested that PAF action pathways in

hatching supporting include the PKC signaling pathway.
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INTRODUCTION

Many putative autocrine, paracrine and endocrine
factors have been implicated in supporting preimplan-
tation embryo development (Hardy and Spanos, 2002;
O'NEeill, 2005). Recent studies have implicated that pla-
telet-activating factor (PAF, 1-O-alky-2-acetyl-sn-glyce-
ryl-3-phosphocholine) (Lu ef al., 2004; Roudebush et al.,
2002), insulin-like growth factor I (IGF-I) (Markham
and Kaye, 2003), IGF-II (Yaseen ef al., 2001), and epi-
dermal growth factor / transforming growth factor «
(Cai et al, 2003) regulate the embryo development as
autocrine factor. However their mechanisms of action
and their temporal patterns of action are poorly un-
derstood during preimplantation period.

The early stage embryo synthesis the PAF with de novo
synthetic manner and use it as autocrine and paracrine
factors during early development (Stoddart ef al., 2001).
PAF express in the embryos by a complete an autocrine
trophic loop. PAF involve the embryonic cellular activity
including embryonic metabolism (O'Neill, 2005), cell-cycle
progression (Stoddart et al., 2001) and embryo viability
(Spinks et al., 1990).

PAF activity regulation depends on deacetylation by
phospholipase A2 (Tjoelker et al., 1995; Prescott et al.,
2000), PAF-binding proteins (Ammit and O'Neill, 1997).
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PAF works through mainly its G-protein coupled mem-
brane receptor (PAFr) (Ishii et al., 2002). Embryo derived
PAF induces transient increases in the intracellular cal-
cium concentration within the 2-cell embryo. This action
requires the presence of extracellular albumin and is
inhibited by prior brief exposure of embryos to recom-
binant PAF acetylhydrolase or PAF receptor inhibitors
(Emerson et al., 2000).

Exposure of preimplantation stage mouse embryo re-
sults in higher implantation rates. Embryonic PAF is
synthesized and released by rabbit and mouse embryos
during the preimplantation period, with maximum levels
at the expanded blastocyst stage (Angle ef al., 1988; Minhas
et al., 1993). Although the production of PAF by preim-
plantation embryos has been reported, physiologic roles of
this potent mediator remain unclear.

Previous cavitation the role of PAF has been de-
monstrated but the effect of PAF on blastocyst deve-
lopment and its mechanism is not yet largely unknown. In
this study, PAF was examined to determine the effect on
blastocyst development to hatching embryo and it’s
receptor mediated signal molecules for the developmental
progression.

MATERIALS AND METHODS
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Reagents

1-(5-isoquinolimnesulfonyl)-2- methylplperazmme
dihydrochloride (H?), a cyclic Ca® dependent protein
kinase C (PKC) inhibitor (Takahashi et al., 2005), and
tetradecanoylphorbol acetate (TPA, porbol 12-myristate
13-acetate) were purchased from Sigma.

Experimental Animals and Embryo Collection .

All animal procedures involved in this study were
conducted according to NIH guidelines for the ethical use
of animals in research. CD-1 mice were maintained on a
14-hr light and 10-hr dark cycle under standard vivarium
conditions, and were supplied with food and water ad
libitum. To induce superovulation, female mice (6~8
weeks old) were injected with 5 iu pregnant mares serum
gonadotropin (PMSG, Sigma) followed after 48 hr by 5 iu
human chorionic gonadotropin (hCG, Sigma). Compacted
embryos were collected at 72 hr post hCG injection from
oviduct-uterine junction by flushing with Biggers, Whi-
tten and Whittingham medium (BWW; 94.6 mM NaCl,
4.78 mM KCJ, 1.19 mM KH,PO,, 1.19 mM MgSO; -7H,O,
1.71 mM calcium lactate, 21.58 mM sodium lactate, 0.3 mM
sodium pyruvate, 25.07 mM NaHCOs, 100 units/ml peni-
cillin, 100 ug/ml streptomycin, pH 7.4, and 0.4% BSA).

Culture of Embryos and Treatment with Cytokine

Embryos (8~10 oocytes / drop) were cultured in 10 pl
drops of BWW medium in mineral oil (Sigma) for 24 hr
after collection (96 hr post hCG injection) at 37C in a
humidified atmosphere containing 5% CO.. To study the
dose effects of platelet activating factor on hatching,
blastocyst were cultured in BWW media containing PAF (1
nM, 500 nM, and 1 pM). The developmental progression
was scored using a differential interference contrast mi-
croscope (Olympus, Japan).

Treatment of H7 and TPA

50 UM or 100 UM H-7 was treated on blastocyst (96 hr
post hCG injection) and observed the embryonic stages
under the microscope (Olympus IX70). On the other hand,
to examine the blocking effect of H-7, H-7 was cotreated
with 1 nM PAF on blastocyst. TPA was prepared as a 20 Y
g/ml stock solution in DMSO. Blastocyst stage embryos
were treated with 20 ng/ml TPA for 48 hr and observed the
developmental stages.

Statistical Analysis

In the maturation assay, each experiment was per-
formed a minimum of 7 times. Data were analyzed by
t-test or ANOVA and considered to be statistically sig-
nificant at P < 0.05.

RESULTS

Table 1. PAF on the blastocyst development. Embryos were
collected at 72 hr post hCG injection and exposed to various
concentration PAF at 24 hr after collection

Embryonic stages

Blastocyst (%)  Expanded (%) Hatching (%)

Control 6/156(3.9) 21/156(13.8) 129/156(82.3)
1 nM 2/153(1.4) 8/153( 5.6)* 143/153(93.0)
500 nM 1/119(1.0) 9/119( 7.0) 104/119(88.4)
1,000 nM  8/122(6.6) 13/122(10.2) 102/122(80.1)

Embryonic stages were detected at 48 hr post treatment. * P<0.05.

Effec‘ts of PAF

To get a profile of exogenous PAF effects on the blas-
tocyst development PAF was treated on blastocyst as
mentioned at Materials and Methods. 1 nM PAF had most
positive effect (P>0.05) on blastocyst development to hat-
ching embryo (Table 1). The positive effects decreased by
incensement of PAF concentration (Table 1).

H-7 Inhibit the Progression of Blastocyst to Hatching
Embryo

To block the PKC activity in the blastocyst 50 UM H-7
was treated and got the result as shown Fig. 1 and Fig. 2.
Some of the embryos developed to the hatching stage at 24
hr post H-7 treatment but significantly decreased the
developmental rate compared with the control (51.3 % vs
77.2%) (Fig. 2). After then, the embryos stopped the deve-

Wy
. E hed T
N
ek -
o * e
L ‘ . f" |2
- I % %
# L AP
; e
Ed 2
. "
kY
- al
. = ig
PR ’
C ' D < Ptk 7N
R Fr
# ¥ ; d * !
* A4
t e r
.. PR
¢ F
. o~ 5
SN ¢
, ¥
A

Fig. 1. Photomicrograph of the blastocyst after exposed to the PAF
or H-7. PAF or H-7 was treated at 96 hr time point post hCG
injection and cultured for 48 hr. A. Control embryos at 144 hr post
hCG injection (same time with 48 hr after treatment). B. H-7
exposed blastocyst after 48 hr culture. Most of embryos were
degenerated. C. PAF exposed blastocyst after 48 hr culture. D.
Embryos after 48 hr culture which were cotreated with PAF and
H-7. Many of the blastocysts stop developmental progression.
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Fig. 2. Blastocyst development after treatment of H-7, PKC inhibitor
(Number of blastocysts: 76). Embryos were collected at 72 hr post
hCG and treated H-7 on only healthy embryos at 96 hr time point
post hCG injection. Developmental stages were observed under the
DIC inverted microscope at 24 hr (A) and 48 hr (B) after H-7
exposure. * P<0.05 versus control. '

lopment and blastocoel was disappeared as shown in Fig.
1B. Blastocyst development was completely stopped by
PKC inhibitor (Fig. 2).

H-7 Block the PAF Effects

PAF was cotreated with H-7 to know whether PAF to
work through PKC. Interestingly H-7 severely blocked the
PAF effects on blastocyst (Fig. 1D). Development of bl-
astocyst to the hatching stage was significantly blocked by
H-7 compared to control and PAF at 24 hr post PAF
treatment (54.4% vs 77.2%) (Fig. 3). At 48 hr 52% of
embryos were showed collapse of blastocoel and dege-
neration (Fig. 3).

TPA Stimulation of Blastecyst Development

A phorbole ester TPA is a well known PKC activator.
Blastocysts were treated with TPA to activate PKC in
blastocyst and to confirm the involvement of PKC on
blastocyst development. As expected, the hatching rate
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Fig. 3. Blastocyst development after cotreatment with PAF and H-7
(Number of blastocysts: 68). Embryos were collected at 72 hr post
hCG and treated H-7 and/or PAF on only healthy embryos at 96
hr time point post hCG injection. Developmental stages were
observed under the DIC inverted microscope at 24 hr and 48 hr
after H-7 exposure. * P<0.05 versus control group, # P<0.05 versus
both control group and cotreated group.
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Fig. 4. Blastocyst development after treatemt of TPA, a PKC
activator (Number of blastocysts: 72). Embryos were collected at 72
hr post hCG and treated TPA on only healthy embryos at 96 hr
time point post hCG injection. Developmental stages were observed
under the DIC inverted microscope at 48 hr after TPA treatment.
* P<0.05 versus control

was significantly increased in TPA treated group compare
to the control (Fig. 4). The developmental rate to the
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hatching stage was similar with 1 nM PAF treated group.

DISCUSSION

Early preimplantation embryos have high levels of PAF
release (Roudebush ef al., 2002) and express PAF receptor
(Stojanov and O'Neill, 1999). It has been suggested that the
consequence for the embryo of PAF stimulation differs at
different stages of development (O'Neill, 2005). Cell pro-
liferation in mouse preimplantation embryos is stimulated
by PAF with stage specific manner (Stoddart et al., 2001).
In addition to the previously known effects of PAF on the
early preimplantation stage embryos, from this study, it is
explored that the blastocyst stage embryo also response to
PAF and 1~1,000 nM dose range of PAF can support the
developmental progression to hatching stage. Also it is
showed maximal encouragement of the blastocyst deve-
lopment to the hatching stage in 1 nM PAF.

The developmental progression rate of blastocyst to
the hatching stage was stage specific and dose specific as
seen in the PAF response profile on blastocysts. The PAF
effects were giving various possibilities; even small incre-
merits above the optimal PAF concentration results in
reduce embryo viability (Ryan ef al., 1990). The litter size of
the PAF receptor over-expressed transgenic mice is re-
duced. On the other hand, PAF receptor knockout em-
bryos cultured in vitro developed poorly compared to wild
type embryos (Lu et al., 2004). The modest reproductive
phenotype of PAF receptor null mice and the apparent
inverse agonism of PAF antagonists on embryos ((Neil,
1995) were shown the transducing PAF’s actions in the
preimplantation embryo. Therefore dose-dependent blas-
tocsyt developmental patterns showed that PAF charac-
teristics exist from early preimplantation embryo to blas-
tocyst.

The PAFr contains seven « -helical domains that span
the plasma membrane and related with G-proteins. De-
pending on the cell types, multiple G proteins interact
with the PAF receptor resulting in a myriad of distinct
signaling pathways (Haribabu et al., 1999; van Biesen et al.,
1996). PAF mediates a variety of physiological effects
through coupled G-protein, including elevation of intrace-
llular Ca** (Shukla, 1991), and induction of endothelial cell
migration (Camussi ef al., 1995). Development of blastocyst
to the expansion or hatching stage is regulated by various
factors (Cheon, 2005). As seen the results, PKC inhibitor,
H-7 inhibited the development of blastocyst to hatching
stage and gave mortal effects in viability of the embryos.
H-7 inhibited the PAF effects on the blastocyst deve-
lopment. Besides PKC activator stimulated the blastocyst
development to the hatching stage. These result means
that PKC is the downstream target molecule of PAF
signaling pathway in the blastocyst.

PKC activity can be regulated by diacylgycerol, calcium,
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phospahatidylserine. Activated PKC phosphorylate target
proteins that vary depending on the cell type. PKC involve
in cavitation in preimplantation embryos via target pro-
teins including Na'/K" ATPase (Eckert et al., 2004) and tight
junction membrane assembly in the preimplantation
mouse embryo (Eckert et al., 2004). Several reports have
shown that PKC may regulate actin cytoskeleton organi-
zation and dynamics (Cybulsky et al., 2004; Keenan and
Kelleher, 1998). Progression of blastocyst to the hatching
stage was regulated factors like calcium (Cheon, 2005) and
involved trophectodermal locomotion mediated actin
filaments (Cheon et al., 1999). Based on these reports it is
suggested that PKC accelerated blastocyst development to
the hatching stage through cavitation or actin filament
mediated locomotion.

In summary, PAF induced responses, which reached a
maximum at 1 nM PAF and declined at higher dose. PAF
stimulate the hatching of the blastocyst, PAF acts through
PKC, an intermediate protein in the signaling cascade
that starts with PAF to ensure proper development. One of
the suitable interpretations is that excessive PAF signaling
is detrimental to the establishment of hatching or im-
plantation.
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