• Title/Summary/Keyword: Preheating Effect

Search Result 94, Processing Time 0.033 seconds

Ammonia Removal Characteristics in Membrane Contactor System Using Tubular PTFE Membrane (관형 PTFE 분리막을 이용한 막 접촉기(Membrane Contactor) 시스템에서 암모니아의 제거 특성)

  • Ahn, Yong-Tae;Hwang, Yu-Hoon;Shin, Hang-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.5
    • /
    • pp.353-358
    • /
    • 2011
  • In this study, ammonia removal characteristics in membrane contactor system under various operating conditions were evaluated. The mass transfer coefficient was used to quantitatively compare the effect of various operation conditions on ammonia removal efficiency. Effective removal of ammonia was possible with the tubular PTFE membrane contactor system at all tested conditions. Among the various operation parameters, contact time and solution pH showed significant effect on ammonia removal mechanism. Overall ammonia removal rate was not significantly affected by influent suspended solution concentration unlike other pressure driven membrane filtration processes. Also the osmotic distillation phenomena which deteriorate the mass transfer efficiency can be minimized by preheating of strip solution. Membrane contactor system can be a possible alternative to treat high strength nitrogen wastewater by optimizing operation conditions such as stripping solution flow rate, influent wastewater temperature, and influent pH.

Effect of Sintering condition on Mechanical Properties of Zircon Shell Molds (소결조건이 지르콘 쉘 몰드의 기계적 특성에 미치는 영향)

  • Kim, Jae-Won;Kim, Du-Hyeon;Seo, Seong-Mun;Jo, Chang-Yong;Choe, Seung-Ju
    • Korean Journal of Materials Research
    • /
    • v.9 no.9
    • /
    • pp.865-871
    • /
    • 1999
  • Effect of sintering condition in mechanical properties of ZrSiO\ulcorner shell molds was investigated. Number of microcrack in primary layer of the mold was maximized after preheating at $1000^{\circ}C$ for 1.5 hours. Yield strength and specific surface area of the mold were inversely proportion to sintering temperature and time. After hot deformation test at $1500^{\circ}C$ for 4 hours, molds were deformed opposite to the loading direction and backup layers were cracked along the interface between stucco and zircon slurry. Reverse deformation of the molds during hot deformation test was considered to be resulted from the difference of thermal expansion coefficient between alumina stucco and zircon slurry in primary coat, and size difference between zircon stucco and zircon slurry in backup coat.

  • PDF

Rotary Veneer Peeling of Some Softwoods and Its Veneer Drying (수종(數種)의 침엽수재(針葉樹材)의 로타리 단판(單板) 절삭(切削)과 건조(乾燥))

  • Jung, Hee-Suk;Lee, Nam-Ho;Yeo, Hwan-Myeong;Lee, June-Ho;Yoo, Tae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.34-47
    • /
    • 1996
  • Veneers of two nominal thicknesses, 1.5 and 2.5mm, were rotary peeled from Japanese larch (Larix leptolepis). Dahurian larch (Larix gmelinei) and Radiata pine (Pinus radiata) bolts unheated and heated in the water vat temperature of $66^{\circ}C$ by rising a final temperature at 10cm core of $60^{\circ}C$ to remain core diameter of 11.4cm. 1.5 and 2.5mm thick veneer cut from the heated Japanese larch were significantly thinner than those of the unheated bolt and 2.5mm thick veneer cut from the heated Dahurian larch were significantly thicker than that of the unheated bolt. 1.5mm thick Dahurian larch veneer and 1.5 and 2.5mm thick Radiata pine veneers showed insignificant difference between the unheated and heated bolts, respectively. Check distance on the loose side of 1.5mm thick veneer cut from the heated Radiata pine was significantly wider than that of the unheated bolt. However check distances on the loose side of 1.5 and 2.5mm thick Japanese larch and Dahurian larch veneers and 2.5mm thick Radiata pine veneers showed insignificant difference between the unheated and heated bolts. Also the depth of check on the loose side of three species showed insignificantly difference between the unheated and heated bolts. Arithmatic mean deviation($R_a$) and maximum height($R_{max}$) of the profile on the loose side of dried veneer by preheating the bolt compared with unheated bolts were different among apecies and between veneer thickness. The preheating treatment slightly affected qualities of these thin veneers such as 1.5 and 2.5mm. The yield of 2.5mm thick veneer from the heated radiata pine was significantly higher than that of the unheated bolt. However the yield of 2.5mm thick veneer for other two species and 1.5mm thick veneer for three species showed insignificant difference between the unheated and heated bolts. The yield of 2.5mm thick veneer for three species were higher than those of 1.5mm thick veneer. The average yields of green veneer of Japanese larch. Dahurian larch and Radiata pine were 57.1, 55.1 and 54.0 percent, respectively. Variables such as initial MC. drying time and veneer thickness had strong effect for Japanese larch veneer, less effect for Radiata pine veneer and nuch less effect on final MC for Dahurian larch veneer in jet drying. Correlation between the current MC and the drying time of Dahurian larch with low variation of initial MC was higher than those of Japanese larch and Radiata pine veneer with high variation of initial MC in high temperature drying. Thickness shrinkages of 2.5mm thick veneer for Japanese larch and Radiata pine were higher than those of 1.5mm thick veneers, but shrinkages of Dahurian larch veneer were similar between two nominal veneer thicknesses.

  • PDF

Effect of Horizontal Pitch-to-Diameter Ratio on the Natural-Convection Heat Transfer of Two Staggered Cylinders (엇갈리게 배열된 두 개의 수평관에서 수평 피치-직경비에 따른 자연대류 열전달 영향)

  • Chae, Myeong-Seon;Heo, Jeong-Hwan;Chung, Bum-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.259-268
    • /
    • 2012
  • This study measured the natural-convection heat transfer of two vertically staggered cylinders with varying vertical pitch-to-diameter ($P_v$/D) and horizontal pitch-to-diameter ($P_h$/D) ratios. The measured heat-transfer rates for the lower cylinder agreed well with the existing heat-transfer correlations for a single cylinder. At the smallest $P_v$/D, the rising plume from the lower cylinder provides the upper cylinder with a preheated flow, and the heat-transfer rates of the upper cylinder decrease, but increase very sensitively with $P_h$/D. However, at the largest $P_v$/D, the velocity effect dominates, and the heat-transfer rates of the upper cylinder are larger than that of a single cylinder, and decrease less sensitively with $P_h$/D. Even if $P_h$/D is increased, the heat-transfer rate of the upper cylinder is higher than that of the lower cylinder because of the chimney and side flow effects. This work expanded the flow ranges to turbulent flows. The cupric acid-copper sulfate ($H_2SO_4-CuSO_4$) electroplating system was adopted for the measurements of the mass-transfer rates instead of the heat-transfer experiments based on the analogy concept. The measurements were made by varying $P_v$/D (1.02-5) and $P_h$/D (0-2) in both laminar and turbulent flows. The Rayleigh number ranged from $1.5{\times}10^8$ to $2.5{\times}10^{10}$, and the Prandtl number was 2,014.

Numerical Analysis of Integrated Fuel Processing System Considering Thermo-Chemical Energy Balance (열/화학적 에너지 평형을 고려한 통합 연료 개질 시스템의 수치적 연구)

  • Noh, Junghun;Jung, Hye-Mi;Jung, Un-Ho;Yoon, Wang-Lai;Um, Sukkee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.111.1-111.1
    • /
    • 2010
  • This paper focuses on a systematic configuration of steam reforming fuel processor, particularly designed for small and medium sized hydrogen production application. In a typical integration of the fuel processor, there exist significant temperature gradients over the entire system which has negative effect on both catalyst life-time and system performance. Also, the volumetric inefficiency should be avoided to obtain the possible compactness for the commercial purpose. In the present work, the computational analysis will be performed to gain the fundamental insight on the transport phenomena and chemical reactions in the reformer consisting of preheating, steam reforming (SR), and water gas shift (WGS) reaction beds in the flow direction. Also, the fuel processing system includes a top-fired burner providing necessary thermal energy for endothermic catalytic reactor. A fully two-dimensional numerical modeling for a integrated fuel processing system is introduced for in-depth analysis of the heat and mass transport phenomena based on surface kinetics and catalytic process. In the model, water gas shift reaction and decomposition reaction were assumed to be at equilibrium. A kinetic model was developed and then computational results were compared with the experimental data available in the literature. Finally, the case study was done by considering the key parameters, i.e. steam to carbon (S/C) ratio and temperature. The computer-aided models developed in this study can be greatly utilized for the design of advanced fast-paced compact fuel processors research.

  • PDF

Studies on the Kimchi Pasteurization -Part 1. Method of Kimchi Pasteurization with Chinese Cabbage Kimchi and its Effect on the Storage- (김치의 순간살균방법(瞬間殺菌方法) -제1보(第-報). 배추 김치의 순간살균방법(瞬間殺菌方法)과 살균효과(殺菌效果)-)

  • Lee, Nam-Jin;Chun, Jae-Kun
    • Applied Biological Chemistry
    • /
    • v.24 no.4
    • /
    • pp.213-217
    • /
    • 1981
  • A Kimchi pasteurizer consisting of preheating, holding, cooling and liquid separation sections was built with copper tubing coil and glasses. The liquid portion of a Chiness Cabbage Kimchi prepared with 3% NaCl solution was preheated and held for 3 minutes at sterilization temperature. Thereafter it was cooled momentarily and recombined with the untreated solid part of Kimchi At four different temperatures of $68^{\circ}$, $75^{\circ}$, $81^{\circ}$ and $85^{\circ}C$ Kimchi was sterilized and examined for the sterilization effects by measuring acid and pH changes of the Kimchi when stored at $15^{\circ}C$. The shelf-life of sterilized Kimchi was prolonged by two folds compared with the untreated one. When Kimchi was sterilized at different maturing stages. the less cured one prolonged its shelf-life more effectively.

  • PDF

Effect of Titanium Surface Treatments Bond Strength and Cytotoxicity in Titanium-Porcelain System

  • Chung, In-Sung;Kim, Chi-Young;Choi, Sung-Min
    • Biomedical Science Letters
    • /
    • v.14 no.2
    • /
    • pp.105-113
    • /
    • 2008
  • The objective of this study was to evaluate the influence of surface modifications on the bonding characteristics and cytotoxicity of specific titanium porcelain bonded to milling titanium and cast titanium. Milling titanium and cast titanium samples were divided into 8 test groups. These groups are as follow: i) sandblasted with particles of different size of $220{\mu}m\;and\;50{\mu}m$, ii) different sequences of sandblasting treatment and etching treatment, iii) etched with different etching solutions, and iv) preheated or not. The surface characteristics of specimens were characterized by the test of mean roughness of surface and SEM. The bond strength of titanium-ceramic systems was measured by using three-point bending test and SEM. The results show that the mean roughness of surface of sample sandblasted with $220{\mu}m$ aluminum oxide increased and bond strength were higher than sample sandblasted with $50{\mu}m$ aluminum oxide. The mean roughness of surface decreased, but the bond strength increased when the samples sandblasted with $220{\mu}m$ aluminum oxide were preheated. The sample sandblasted with $220{\mu}m$ aluminum oxide after oxidized with occupational corrosive agent I (50% NaOH, 10% $CuSO_4{\cdot}5H_2O$) and II (35% $HNO_3$, 5% HF) showed higher bond strength than sample oxidized with 30% $HNO_3$ after sandblasted with $220{\mu}m$ aluminum oxide. Group NaCuNF220SP (milling Ti: 35.3985 MPa, casting Ti: 37.2306 MPa) which was treated with occupational corrosive agent I (50% NaOH, 10% $CuSO_4{\cdot}5H_2O$) and II (35% $HNO_3$, 5% HF), followed by sandblasting with $220{\mu}m$ aluminum oxide and preheating at $750^{\circ}C$ for 1 hour showed the highest bond strength and significant differences (P<0.05). The method for modifying surface of titanium showed excellent stability of cells.

  • PDF

Formation of Oxy-Fuel MILD Combustion under Different Operating Conditions (가동조건 변화에 따른 순산소 마일드 연소 형성 연구)

  • Lee, Pil Hyong;Hwang, Sang Soon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.9
    • /
    • pp.577-587
    • /
    • 2016
  • Although the formation of oxy-fuel MILD combustion is considered one of the promising combustion technologies for high thermal efficiency, low emissions and stability have been reported as difficulties. In this paper, the effect of combustor geometry and operating conditions on the formation of oxy-fuel MILD combustion was analyzed using numerical simulation. The results show that the high temperature region and average temperature decreased due to an increase in oxygen inlet velocity; moreover, a high degree of temperature uniformity was achieved using an optimized combination of fuels and an oxygen injection configuration without external oxygen preheating. In particular, the oxy-fuel MILD combustion flame was found to be very stable with a combustion flame region at equivalence ratio 0.90, fuel velocity 10 m/s, oxygen velocity 200 m/s, and nozzle distance 33.5 mm.

Thermodynamic Analysis on Hybrid Molten Carbonate Fuel Cell - Turbo Expander System for Natural Gas Pressure Regulation (용융탄산염연료전지와 터보팽창기를 이용한 천연가스 정압기지의 열역학적 분석)

  • Sung, Taehong;Kim, Kyung Chun
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.2
    • /
    • pp.28-34
    • /
    • 2014
  • In the natural gas pressure regulation station, high pressure natural gas is decompressing using pressure regulation valves. Waste pressure occurred in the pressure regulation process can be recovered through adopting turbo expanders. However, in the waste pressure recovery process, Joule Thompson effect causes below $0^{\circ}C$ and this low temperature freezes outside land of pipeline or generates methane hydrate in the pipeline which can block the pipeline. Therefore, turbo expander systems are accompanying with a boiler for preheating natural gas. Molten carbonate fuel cell (MCFC), one of the high temperature fuel cell, can use natural gas as a direct fuel and is also exhausting low emission gas and generating electricity. In this paper, a thermodynamic analysis on the hybrid MCFC-turbo expander system is conducted. The fuel cell system is analyzed for the base load of the hybrid system.

Effects of Process Parameter on Alpha-Case Formation of Ti and TiAl castings (Ti 및 TiAl 주조재의 ${\alpha}$-case 형성에 미치는 공정변수에 대한 영향)

  • Lee, Sang-Hwa;Kim, Myoung-Gyun;Sung, Si-Yuong;Kim, Young-Jig
    • Journal of Korea Foundry Society
    • /
    • v.23 no.3
    • /
    • pp.137-146
    • /
    • 2003
  • The main purpose of this study is to investigate the effects of process parameter on alpha-case formation of Ti and TiAl castings. The previous studies showed that the molten titanium is excessively reactive to the refractory oxide mold, resulting in alpha-caes of the titanium castings regardless of composition of titanium alloys. However, the behavior of the alpha-case formation of TiAl alloy is not consistent with conventional titanium alloy. In order to investigate the alpha-case formation of Ti and TiAl castings with process parameter, especially the associated factors of investment mold such as mold material, binder and mold preheating temperature. An attempt has been made to characterize the alpha-case of titanium casting by using optical microscope, EDS, XRD, EMPA and hardness profiles. The formation of the alpha-case on the surface of pure titanium during investment casting was rather by that of solid solution with metallic element from mold material. The required mold strength was obtained with $CaZrO_3$ because of the possibility of using water soluble binder. However, the separation phenomenon between facing and back-up mold materials should be considered. The interfacial reaction of TiAl alloy showed different behavior from that of pure titanium and $Al_2O_3$ was best mold materials. The effect of binder as well as mold material on the formation of alpha-case was significant.