In this paper we introduce the Internet-based purchase support systems using data mining and case-based reasoning (CBR). Internet Business activity that involves the end user is undergoing a significant revolution. The ability to track users browsing behavior has brought the vendor and end customer's closer than ever before. It is now possible for a vendor to personalize his product message for individual customers at massive scale. Most of former researchers, in this research arena, used data mining techniques to pursue the customer's future behavior and to improve the frequency of repurchase. The area of data mining can be defined as efficiently discovering association rules from large collections of data. However, the basic association rule-based data mining technique was not flexible. If there were no inference rules to track the customer's future behavior, association rule-based data mining systems may not present more information. To resolve this problem, we combined association rule-based data mining with CBR mechanism. CBR is used in reasoning for customer's preference searching and training through the cases. Data mining and CBR-based hybrid purchase support mechanism can reflect both association rule-based logical inference and case-based information reuse. A Web-log data gathered in the real-world Internet shopping mall is given to illustrate the quality of the proposed systems.
Deng, Wenping;Muhlbauer, Wolfgang;Yang, Yuexiang;Zhu, Peidong;Lu, Xicheng;Plattner, Bernhard
Journal of Communications and Networks
/
제14권3호
/
pp.336-345
/
2012
Autonomous system (AS) business relationships and their inference have been widely studied by network researchers in the past. An important application of inferred AS relationships can be the prediction of AS paths between a source and destination AS within a model. However, besides knowing the topology and inferred AS relationships, AS path prediction within a model needs to be understood in order for us to know how we can derive border gateway protocol (BGP) policies from AS relationships. In this paper, we shed light onto the predictive capabilities of AS relationships by investigating whether they can be translated into BGP policies such that inferred AS paths are consistent with real AS paths, e.g., paths observed from BGP routing tables. Our findings indicate that enforcing constraints such as the well-known valley-free property and the widely assumed preference of customer routes always results in a very low consistency for AS path inference. In addition, this is true irrespective of whether customer, peer, or provider routes are preferred. Apparently, applying such constraints eliminates many "correct" paths that are observed in BGP routing tables and that are propagated in a simple shortest path model where AS relationships are ignored. According to our findings, deriving BGP routing policies for predicting with high accuracy AS paths in a model directly from AS relationships is still difficult.
The purpose of this study was to examine the effects of the structural properties of plain knit fabrics on the subjective perception of textures, sensibilities, and preference among consumers. This study, then, aimed to provide useful information with respect to planning and designing knitted fabrics by predicting the subjective characteristics analyzed according to their structural properties. For this purpose, we employed statistical analysis tools, such as factor and regression analysis and an adaptive-network-based fuzzy inference system(ANFIS), thereby combining the merits of fuzzy and neural networks and presupposing a non-linear relationship. Through factor analysis, we also categorized the subjective textures into 'roughness', 'softness', 'bulkiness' and 'stretch-ability' with R2=70.32%: and categorized the sensibilities into 'Stable/Neat', 'Natural/Comfortable' and 'Feminine/Elegant' with R2=68.12%. We analyzed subjective textures, sensibilities, and preference with ANFIS, assuming non-linear relationships; consequently, we were able to generate three or four fuzzy rules using wool/rayon fiber content and loop length as input data. The textures of roughness and softness exhibited a linear relationship, but other subjective characteristics demonstrated a non-linear input-output relationship. Compared with linear regression analysis, the ANFIS exhibited had higher predictive power with respect to predicting subjective characteristics.
본 논문은 사용자의 운행 정보를 이용하여 사용자의 선호도 및 성향과 주변의 환경을 판단하고 적용하여 사용자에게 적합한 경로를 추천하는 지능형 네비게이션 시스템을 제안한다. 이 네비게이션 시스템은 센서 정보와 지능형교통시스템의 정보를 이용하여 추천된 경로의 환경 상태와 지형상태를 평가하고 사용자의 감정 상태와 사용자에게 심리적인 영향을 주는 도로의 환경 상태도 고려한다. 또한 소프트 컴퓨팅 기법을 사용하여 인간의 선호도와 성향을 추론 및 학습하며 제안한 알고리즘은 시뮬레이션을 통해 검증한다.
최근에 들어서 생체신호분석을 통하여 여러 가지 사용자 상태를 파악하려는 연구가 많이 진행되고 있다. 대표적인 것이 GSR(전기피부반응, galvanic skin response), BVP(blood volume pressure), 호흡 등의 생체신호가 사람의 흥분 정도, 정신적 부담, 감정변화에 따라 달라지는 특성을 활용하는 것이다. 본 연구에서는 디지털 TV, 혹은 IPTV 의 컨텐츠를 감상하는 환경 하에서 시청자의 생체신호의 변화 패턴을 분석하여, 그 분석 결과로부터 TV 프로그램이나 디지털 컨텐츠에 대해 시청자가 느끼는 만족도, 집중도, 흥미 여부 등을 추론하고자 하였다. 즉, 주어진 컨텐츠를 감상하는 동안 시청자로부터 얻어낸 생체신호를 분석한 시청 정보 데이터가 프로그램에 대한 선호도와 관련을 가질 수 있는지 검증한 기초 연구 결과를 제시한다. 또한 이 결과를 통해 프로그램에 대한 시청자의 반응을 객관적으로 측정하고 실시간으로 반영할 수 있도록 하는 TV 프로그램 추천 시스템의 구현 가능성을 검증한다.
유비쿼터스 컴퓨팅은 사용자의 위치, 상태, 행동정보, 주변 상황 등의 컨텍스트를 인식할 수 있게 하였는데 이로 인해 사용자에게 필요한 서비스를 빠르고 정확하게 제공해 줄 수 있게 되었다. 이와 같은 개인화 추천 서비스는 사용자의 컨텍스트 정보를 인식하고 해석하는 추론기술이 필요한데 본 논문에서는 실생활과 가장 밀접한 음식점을 날씨, 시간, 요일, 위치의 모바일 컨텍스트 데이터를 기반으로 행동 패턴을 추론하여 추천하는 모델을 연구한다. 연구를 위해 자사에서 직접 서비스 하고 있는 사용자 평가 기반 음식점 추천 서비스의 장소와 사용자 생성 데이터를 활용하였고, 행동패턴을 추론하기 위해 나이브 베이즈 방정식을 사용했다. 그리고 선호도 예측 알고리즘을 활용하여 추천 장소를 선정하였다. 시스템으로 구현하여 평가 기반의 추천 방식보다 본 논문에서 제시한 연구의 우수성도 입증하였다.
인터넷이 등장하면서 수 많은 고객이 웹 사이트를 방문하고, 구매나 컨텐츠 이용 등의 다양한 활동을 하게 된다. 그로 인해 웹 시스템에는 방대한 양의 자로가 축적되고 그 자료는 고객의 개인화(Personalization)된 서비스를 가능하게 한다. 고객의 개별적인 특성이나 선호도를 반영한 개인화는 웹 시스템은 봇물처럼 개발되고 있으며, 인터넷 시스템에서 고객의 정보를 분류하기 위해서는 정성적인 지식과 정량적인 지식을 체계적으로 반영하여야 한다. 이러한 두 종류의 지식이 최적의 솔루션을 제공할 수 있도록 사용되어지기 위해서는 일관성과 유연성을 갖는 지식 통합이 이루어져야 한다. 지식 통합은 고객의 개인 선호도를 반영하거나 잘 분류할 수 있게 하기 위해서 먼저 지식 표현이 전제된다. 본 연구는 이러한 지식 통합시스템을 웹 투자 고객에 초점을 맞추어 프로토타입을 개발하였다. 개발된 시스템은 정성적 지식의 추출과 추론 방식 그리고 정성적 지식과 정량적 지식과의 통합 방식을 사용하고 있으며, 고객의 개인 선호도 입력에서부터 포트폴리오 구성가지 전반적인 프로시져를 잘 반영하고 있다. 제안한 지식기반 통합 모형을 가지고 실험적인 분석을 통하여 개인 선호도를 고려한 투자의사결정 문제의 퇴적 포트폴리오 구성에서 우수성을 보이며 정성적 지식이 갖는 투자환경의 변화에 매우 탄력적임을 보여준다.
모바일 환경에서 지능형 서비스를 제공하기 위해서는 사용자의 성향이나 행동패턴 둥의 컨텍스트 정보를 효과적으로 분석하여 사용자의 의도나 요구사항을 예측할 필요가 있다. 본 논문에서는 모바일 디바이스에 축적된 불확실한 로그 정보에서 컨텍스트 정보를 추론하고, 이를 효과적으로 서비스와 매칭해 주기 위한 컨텍스트 트리 기반 사용자 행동 추론 방법을 제안한다. 이 때 불확실한 컨텍스트 정보를 효과적으로 추론하기 위해 베이지안 확률 접근 방법을 채택하였으며, 컨텍스트 트리는 수학적인 방법만으로는 다룰 수 없는 비 수치적인 컨텍스트를 효과적으로 활용하기 위해 선택한 구조이다. 그리고 제안하는 방법을 지능형 전화상대 추천 서비스에 적용하여 유용성을 검증하였다.
본 논문은 사용자들에게 알맞은 공원을 추천해주는 시스템을 제안한다. 사회적, 심리적, 환경적, 신체적 등 사람들에게 긍정적인 요소를 제공하는 도시공원의 기능에 따라 서울시 도시공원을 6가지로 분류한다. 분류된 공원을 규칙기반 전문가 시스템을 기반으로 사용자들에게 추천한다. 공원 선택에 영향을 주는 요인들을 언어 객체로 설정하여 규칙 기반 추론 시스템을 논리 프로그램 언어인 PROLOG로 구현한다. 공원 추천의 규칙 기반 객체는 활동·다목적성과 접근성, 이용 시간을 기준으로 총 9가지 언어 객체를 설계하고 그에 따른 허용된 값을 부여한다. 이를 이용하여 생성된 규칙들이 사용자의 선호도에 따라 점화되고 추천 공원을 추론한다. 선호도에 대한 정보는 사용자들에게 직접 공원 선택에 있어서 기준이 되는 세 가지 요소에 대한 질문을 건네는 대화의 방식으로 얻는다. 결과적으로 공원 추천 시스템을 통해 공원 이용자들의 공원 이용 및 여가 생활에 대한 만족감을 높여주고자 한다.
In this paper, the expert system to reduce the amount of food waste is proposed. The method of material flow analysis (MFA) is applied. Proper handling of waste beyond the terms of the need for proactive research been mentioned before, but actually cause the waste generator research focuses on consumer behavior and the business community to analyze the flow of materials within the study are insufficient. In this paper, the type of food consumption and food waste, look at the relationship between the occurrence of secondary schools in the diet is provided for students to examine the preferences of the target model diet expert system was reconfigured. Preference for leaving the food in the diet leads to the important information that is Each diet recipes that make up the target material flow analysis (MFA) was constructed to perform all the database. This database is currently being generated from the rain while cooking diet edible plants and materials to reflect the self-esteem following the recommended diet is used to create. Reducing food waste is actually being used currently in research knowledge to the knowledge base was constructed. Future Home Smart System was developed in conjunction with the system to the user, by providing guidelines for the utilization can be expected.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.