• Title/Summary/Keyword: Prefabricated

Search Result 477, Processing Time 0.02 seconds

Determination of the load carrying capacity of closed steel supports used in underground construction and mining

  • Lenka, Koubova;Petr, Janas;Karel, Janas;Martin, Krejsa
    • Steel and Composite Structures
    • /
    • v.45 no.5
    • /
    • pp.715-728
    • /
    • 2022
  • Closed steel supports of different shapes are used in mining and underground constructions. The supports are prefabricated from rolled, usually robust, steel profiles. The load carrying capacity of a support is considerably influenced by the active loading and passive forces. The passive forces are induced by interactions between the support and the surrounding rock mass. The analysis herein comprises three parts: The first part consists of structural geometry processing. The second part involves finding the numerical solution of a statically indeterminate structure for a specified load. The third part is calculation of the load carrying capacity and the components of internal forces and deformations. For this, the force method and numerical integration are used. The Winkler model is applied when the support interacts with the surrounding environment. The load carrying capacity is limited by the slip resistance of the connected parts and it is limited by reaching the ultimate state of the profile. This paper serves as a comprehensive reference for the determination of the load carrying capacity of closed steel supports and includes stepwise derivations of the governing formulas.

The cover of an ear thermometer probe as a split-thickness skin graft mold in external auditory canal reconstruction

  • Chae Rim Lee;Sungyeon Yoon;Ji Hun Kim;Jangyoun Choi;Kyoung Ho Park;Deuk Young Oh
    • Archives of Craniofacial Surgery
    • /
    • v.24 no.4
    • /
    • pp.198-201
    • /
    • 2023
  • Maintaining the patency of the external auditory canal (EAC) during reconstruction is important because of its physiological role in hearing and immunological protective functions. The curved shape of the EAC presents a challenge when performing a skin graft. One of the key points for a successful skin graft is to ensure compression on the wound bed, and many novel methods, including prefabricated ear molds, have been reported for this purpose. In this study, we present a case of a skin graft performed to reconstruct a skin defect following excision of actinic keratosis in the EAC, using the cover of an ear thermometer probe as a mold for the graft to match the curvature of the EAC. This is an economical and practical method for secure compression dressing of a skin graft in the EAC.

Smart Tourism Design: A Semiotic Affordances Approach

  • Chulmo Koo;Jaehyun Park;William C. Hunter
    • Journal of Smart Tourism
    • /
    • v.3 no.2
    • /
    • pp.15-21
    • /
    • 2023
  • This paper presents a conceptual approach to Smart Tourism Design based on semiotic affordances theory. This conceptual approach repositions smart tourism from a techno-centric perspective that frames a seamless connection between the device and its software, to a more human-centric perspective that favors the user's needs, desires as perceived through the senses. An updated Smart Tourism Design emphasizes the aesthetic dimension of smart tourism that presents the objects of the travel experience as destination specific rather than universal, through representations as digital artifacts. This theory is based on an empirical and objective understanding of representations and how they can be identified as useful in the digital augmentation of travel experiences. Using Peirce's sign systems and Gibson's theory of affordances, smart tourism can transcend a prefabricated device-oriented experience to a closer dynamic and direct interaction between the user and the travel destination. Researchers and developers can use semiotics as a structural approach to recognizing objects as sign-types, and they can use affordances to better identify the immediacy of digital artifacts and purpose-driven by users' spontaneous and immediate motives.

Axial behavior of square CFST encased seawater sea-sand concrete filled PVC/GFRP tube columns

  • Rong Su;Xian Li;Ziwei Li
    • Steel and Composite Structures
    • /
    • v.47 no.6
    • /
    • pp.781-794
    • /
    • 2023
  • In order to directly apply seawater and sea sand in construction without desalination, a type of square concrete-filled steel tube (CFST) encased with prefabricated seawater sea-sand concrete filled Polyvinyl Chloride (PVC)/Glass Fiber Reinforced Polymer (GFRP) tube column was proposed. Twenty short columns were tested under uniaxial loads, and the test parameters included inner tube types, seawater sea-sand concrete replacement ratios, concrete strength, the wrapping area of Carbon Fiber Reinforced Polymer (CFRP) strips and the thickness of GFRP tube. The effects of the parameters on failure modes, loading capacity, ductility and strain responses were discussed. All the tested specimens failed with serious buckling of the steel tubes and fracture of the inner tubes. The specimens had good residual bearing capacity corresponding to 64% to 88.9% of the peak capacity. The inner GFRP tubes and PVC tubes wrapped by CFRP strips provided stronger confinement to the core concrete, and were good choices for the proposed columns. Moreover, an analytical model for the composite column with different inner tube types was proposed.

Experimental seismic behavior of RC special-shaped column to steel beam connections with steel jacket

  • Hao, Jiashu;Ren, Qingying;Li, Xingqian;Zhang, Xizhi;Ding, Yongjun;Zhang, Shaohua
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.101-118
    • /
    • 2022
  • The seismic performance of the reinforced concrete (RC) special-shaped column to steel beam connections with steel jacket used in the RC column to steel beam fabricated frame structures was investigated in this study. The three full-scale specimens were subjected to cyclic loading. The failure mode, ultimate bearing capacity, shear strength capacity, stiffness degradation, energy dissipation capacity, and strain distribution of the specimens were studied by varying the steel jacket thickness parameters. Test results indicate that the RC special-shaped column to steel beam connection with steel jacket is reliable and has excellent seismic performance. The hysteresis curve is full and has excellent energy dissipation capacity. The thickness of the steel jacket is an important parameter affecting the seismic performance of the proposed connections, and the shear strength capacity, ductility, and initial stiffness of the specimens improve with the increase in the thickness of the steel jacket. The calculation formula for the shear strength capacity of RC special-shaped column to steel beam connections with steel jacket is proposed on the basis of the experimental results and numerical simulation analysis. The theoretical values of the formula are in good agreement with the experimental values.

Flexural behavior and flexural capacity prediction of precast prestressed composite beams

  • Hu, Manxin;Yang, Yong;Yu, Yunlong;Xue, Yicong
    • Structural Engineering and Mechanics
    • /
    • v.84 no.2
    • /
    • pp.225-238
    • /
    • 2022
  • In order to improve the cracking resistance of reinforced concrete and give full play to the advantages of prefabricated assembly structure in construction, prestressed reinforced concrete composite beam (PRCC) is proposed. Through the bending static test of seven I-shaped beam specimens, the bending failure modes and bearing capacity of PRCC and reinforced concrete composite beam are compared and analyzed, and the effects of prestress size, prestressed reinforcement layout and prestress application sequence on the flexural behavior of PRCC beams are studied. The results show that the cracking load and ultimate load of PRCC beams significantly increased after prestressing, and prestressed tendons can effectively control the crack development. With the increase of prestressing degree, the deformation resistance and bending stiffness of PRCC beams are increased. The application sequence of prestress has little influence on the mechanical properties of PRCC beams. The crack width, stiffness and normal section bearing capacity of PRCC beam are analyzed, and the calculated results are in good agreement with the experimental results.

A Study on the Reinforcement Method of the Door Lock Box Frame for Easy Field Processing Assembly in Steel Door (강철재도어에서 현장가공조립이 용이한 도어락상자틀 보강방법에 대한 연구)

  • Iim, Bo-Hyuk;Lee, Joo-Won;Cho, Seong-Gwon;Lee, Hae-Yeol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.133-134
    • /
    • 2023
  • In general, all buildings are equipped with various types of handles for opening and closing the door, and unlike wooden doors, steel doors such as fire doors are equipped with a box-shaped door lock box frame surrounding the outside of the door lock to protect the door lock, which is called a cylinder protection cover. These cylinder protection covers have various types and types of fastening structures, and the cylinder protection covers on the market are molded in factories and standardized according to the size and shape of the door lock, requiring various types of cylinder protection covers. Accordingly, a variable cylinder protection cover with a simple prefabricated structure that can fundamentally solve these problems can be used as one cylinder protection cover regardless of the type, shape, and size of the door lock.

  • PDF

Experimental and numerical validation of guided wave based on time-reversal for evaluating grouting defects of multi-interface sleeve

  • Jiahe Liu;Li Tang;Dongsheng Li;Wei Shen
    • Smart Structures and Systems
    • /
    • v.33 no.1
    • /
    • pp.41-53
    • /
    • 2024
  • Grouting sleeves are an essential connecting component of prefabricated components, and the quality of grouting has a significant influence on structural integrity and seismic performance. The embedded grouting sleeve (EGS)'s grouting defects are highly undetectable and random, and no effective monitoring method exists. This paper proposes an ultrasonic guided wave method and provides a set of guidelines for selecting the optimal frequency and suitable period for the EGS. The optimal frequency was determined by considering the group velocity, wave structure, and wave attenuation of the selected mode. Guided waves are prone to multi-modality, modal conversion, energy leakage, and dispersion in the EGS, which is a multi-layer structure. Therefore, a time-reversal (TR)-based multi-mode focusing and dispersion automatic compensation technology is introduced to eliminate the multi-mode phase difference in the EGS. First, the influence of defects on guided waves is analyzed according to the TR coefficient. Second, two major types of damage indicators, namely, the time domain and the wavelet packet energy, are constructed according to the influence method. The constructed wavelet packet energy indicator is more sensitive to the changes of defecting than the conventional time-domain similarity indicator. Both numerical and experimental results show that the proposed method is feasible and beneficial for the detection and quantitative estimation of the grouting defects of the EGS.

Assessment of Wear Resistance in Tooth-Colored Materials for Primary Molar Crown Restoration in Pediatric Dentistry

  • Hyun Seok Kang;Yooseok Shin;Chung-Min Kang;Je Seon Song
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.51 no.1
    • /
    • pp.22-31
    • /
    • 2024
  • The objective of this study was to assess the wear resistance of tooth-colored materials used in crown restoration for primary molars with a chewing simulator. In this study, four groups-three experimental groups and one control group-were included. They consisted of three-dimensional (3D) printed resin crowns (NextDent and Graphy), milled nano-hybrid ceramic crowns (MAZIC Duro), and prefabricated zirconia crowns (NuSmile). Twelve mandibular second molar specimens were prepared from each group. In the wear experiment, 6.0 × 105 cycles were conducted with a force of 50 N, and a 6 mm-diameter steatite ball was used as an antagonist. The amount of wear was calculated by comparing the scan files before and after the chewing simulation using 3D metrology software, and the worn cross-section was confirmed by scanning electron microscopy (SEM). The resin and ceramic groups did not exhibit any statistically significant differences. However, compared to other crown groups, the zirconia crown group demonstrated notably reduced levels of wear (p < 0.05). In SEM images, layers and cracks were observed in the 3D-printed resin crown groups, which differed from those in the other groups.

Flexural performance of composite beams with open-web π-shaped steel partially-encased by concrete

  • Liusheng Chu;Yunhui Chen;Jie Li;Yukun Yang;Danda Li;Xing Ma
    • Steel and Composite Structures
    • /
    • v.50 no.4
    • /
    • pp.419-428
    • /
    • 2024
  • Prefabricated partially-encased composite (PEC) structural component is widely used in construction industry due to its superior structural performance and easy assembly characteristic. However, the solid web in traditional PEC components tends to split concrete into two halves, thus potentially reduces structural integrity and requires double concrete pouring. To overcome the above disadvantages, a new PEC beam with open-web π-shaped steel is proposed in this paper. Four open-web PEC beams with varying sectional height, flange thickness and web void rate were constructed and tested under flexural loads. During experimental tests, all beams exhibited typical flexural failure modes with strong moment capacities and excellent ductility. Owing to the unique construction form of web opening, steel-concrete bonding properties were enhanced and very small relative steel-concrete slips were observed. Experimental results also showed that the flexural capacity of such PEC beams increased with the increase of the sectional height and flange thickness, while was not affected by the web void rate. At last, a flexural capacity formula of the open-web PEC beam was proposed based on the whole section plastic rule. The formula results agreed well with experimental results.