• Title/Summary/Keyword: Prefabricated

Search Result 472, Processing Time 0.031 seconds

Development of Prefabricated Joint for 66kV Cross Linked Polyethylene Cable. (66kV XLPE Cable용 조립형 접속함의 개발)

  • Oh, E.J.;Kim, K.Y.;Lee, J.Y.;Park, J.K.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2123-2125
    • /
    • 1999
  • In recent the XLPE cable has been applied more widely because of its advantages, such as the low-cost and simple installation. For a prefabricated joint, its working time is short, its jointing procedures aγe simple, and its quality control is easy. Electrical performance targets of our developed 66kV cable accessories has been approved through the type test in accordance with IEC publication 840. This paper describes the developmental effort in terms of the design, structure and results of performance verification tests for 66kV XLPE cable system.

  • PDF

Optimum PVD installation depth for two-way drainage deposit

  • Chai, J.C.;Miura, N.;Kirekawa, T.;Hino, T.
    • Geomechanics and Engineering
    • /
    • v.1 no.3
    • /
    • pp.179-191
    • /
    • 2009
  • For a two-way drainage deposit under a surcharge load, it is possible to leave a layer adjacent to the bottom drainage boundary without prefabricated vertical drain (PVD) improvement and achieve approximately the same degree of consolidation as a fully penetrated case. This depth is designated as an optimum PVD installation depth. Further, for a two-way drainage deposit under vacuum pressure, if the PVDs are fully penetrated through the deposit, the vacuum pressure will leak through the bottom drainage boundary. In this case, the PVDs have to be partially penetrated, and there is an optimum installation depth. The equations for calculating these optimum installation depths are presented, and the usefulness of the equations is studied by using finite element analysis as well as laboratory model test results.

Fiber-Reinforcements of Composite Restorations

  • Cho, Kyung-Mo
    • Proceedings of the KACD Conference
    • /
    • 2001.05a
    • /
    • pp.258-258
    • /
    • 2001
  • Fiber-reinforced materials have highly favorable mechanical properties. and their strength-to-weight ratios are superior to those of most alloys. When compared to metals they offer many other advantages as well. including non-corrosiveness. translucency. good bonding properties. and ease ofrepair. Fiber-reinforced materials can be categorized to pre-impregnated. impregnation required. dental laboratory products. chairside products and prefabricated posts. so it is not suprising that fiber-reinforced composites have potential for use in many applications in dentistry. Fiber-reinforced materials can be utilized in frameworks for crowns. anterior or posterior fixed prostheses. chairs ide tooth replacements. periodontal splints. customized posts. prefabricated posts. orthodontic retention. denture reinforcements and in implants dentistry. To realize the full potential of using fiber-reinforced composite restorations. it is essential that the clinician and laboratory technician understand concepts of tooth preparation and framework design. Also practitioner may appreciate the background information and other details about the materials themselves so that identify the rationale for their use in various clinical situations. select well-suited materials. and carry out related procedures. Understanding the material properties and take many attentions. fiber-reinforced materials will give more esthetic. more easy. more strong and more reliable restorations.ations.

  • PDF

Development of Prefabricated Joint for 132kV Cross Linked Polyethylene Cable (132kV XLPE CABLE 조립형 접속함의 개발)

  • Kim, J.H.;Oh, E.J.;Kim, K.Y.;Park, J.K.;Jeong, Y.W.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2017-2019
    • /
    • 2000
  • In recent the XLPE cable has been applied more widely because of its advantages, such as the low-cost and simple installation. For a prefabricated joint, its working time is short, its jointing procedures are simple, and its quality control is easy. Electrical performance targets of our developed 132kV cable accessories has been approved through the type test in accordance with IEC publication 840. This paper describes the developmental effort in terms of the design, structure and results of performance verification tests for 132kV XLPE cable system.

  • PDF

A Study on the Improvement of Wall Execution Method on Hanok (한옥 축부(軸部) 시공법 개선 연구)

  • Kim, Do-Kyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2670-2675
    • /
    • 2010
  • Wall of hanok is related to exterior, inner environment, and the period and cost of construction. This study analyzes traditional wall execution method and suggests improved one. The characters of the improved execution method are use of ready made goods, application of dry and prefabricated method and improvement of airtightness and insulation capacity etc. The result of this study needs production of pilot productions and tests of capacity. But this new method will be useful to save the period and cost of hanok construction.

Trial Installation and Performance Evaluation of Prefabricated Concrete Slab Track on Revenue Line (프리캐스트 콘크리트 슬래브궤도의 영업선 시험시공 및 성능평가)

  • Jang, Seung-Yup;Kang, Yun-Suk;Lee, Hu-Sam;Kim, Yu-Bong;Lee, Jong-Soo
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.840-845
    • /
    • 2008
  • To develop our original technology of concrete slab track, being widely accepted for new track, prefabricated concrete slab track, or precast concrete slab track has been developed. They have two different types according to slab shape and its dimensions, connection of slabs and connecting structure onto substructure. After the system design and successful performance evaluation in the laboratory, the trial installation on revenue line has been carried out. This paper is presenting the result of the trial installation and the performance tests in field. The performance tests have been performed as visual inspection for cracks and damages, measurement of track alignment and elastic behavior of track under passing trains. The performance test results during last 2 years have shown that no remarkable damages and settlements were found, and track alignment and elastic track behavior both exhibits good status.

  • PDF

Performance Evaluation of Eco-Friendly Prefabricated Rainwater Permeable Detention Block Structure (친환경 조립식 빗물침투저류블록 구조체의 성능검토)

  • Jung, YoungWoong;Ju, SeungJin;Kim, Hojin;Lee, Taegyu;Choi, Heeyong;Ryu, Jungrim;Choi, Hyeonggil
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.299-300
    • /
    • 2023
  • In this study, the performance evaluation and structural safety of rainwater permeation detention block were analyzed. As a result, the compressive strength (19.3 MPa), flexural strength (5.2 MPa), and permeability coefficient (2.0 mm/s) of the eco-friendly prefabricated rainwater permeable detention block satisfied the KS F 4419 and SPS-KCIC0001-0703 and it was confirmed sufficient safety even under maximum load.

  • PDF

BIM-based Digital Engineering Modeling Process Proposal for Prefabricated Bridges (BIM 기반 디지털엔지니어링 모델을 활용한 프리팹 교량모델 작성 프로세스)

  • Choi, Jae-Woong;Kim, Hyun-Min;Hong, Sa-Hoon
    • Journal of KIBIM
    • /
    • v.13 no.4
    • /
    • pp.36-44
    • /
    • 2023
  • Recently in Korea, efforts are underway to enhance smart construction by implementing Building Information Modeling (BIM) comprehensively across all sectors of the construction industry. This study focused on the adoption of BIM for prefab bridges currently executed in the industry and It examined the process of creating a BIM-based prefab bridge model that can support production. Additionally, it explored how prefab products made by manufacturers can be integrated with road alignments using BIM technology and how the DfMA (Design for Manufacturing and Assembly) approach, which supports production based on designed information, can be adopted. The process of creating the prefab bridge model aims to shorten production time, reduce costs, and enhance quality by leveraging digital information related to design and manufacturing within the BIM framework